Introduction to Oracle9i: SQL

Instructor Guide « Volume 2

40049GC11
Production 1.1
October 2001
D33994

ORACLE"



Authors

Nancy Greenberg
Priya Nathan

Technical Contributors

and Reviewers

Josephine Turner
Martin Alvarez
Anna Atkinson
Don Bates
Marco Berbeek

Andrew Brannigan
Laszlo Czinkoczki

Michael Gerlach
Sharon Gray
Rosita Hanoman
Mozhe Jaldli
Sarah Jones
Charbel Khouri
Christopher Lawless
Diana Lorentz
Nina Minchen
Cuong Nguyen
Daphne Nougier
Patrick Odell
Laura Pezzini
Stacey Procter
Maribel Renau
Bryan Roberts
Helen Robertson
Sunshine Salmon
Casa Sharif
Bernard Soleillant
Craig Spoonemore
Ruediger Steffan
KarlaVillasenor
Andree Wheeley
Lachlan Williams

Publisher

Nita Brozowski

Copyright © Oracle Corporation, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate Ill (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

Oracle and all references to Oracle products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.



Contents

Preface
Curriculum Map

Introduction
Objectives 1-2
Oracle9i 1-3
Oracle9i Application Server 1-5
Oracle9i Database 1-6
Relational and Object Relational Database Management System |-7
Oracle Internet Platform -8
System Development Life Cycle [-9
Data Storage on Different Media 1-11
Relational Database Concept 1-12
Definition of a Relational Database 1-13
Data Models I-14
Entity Relationship Model 1-15
Entity Relationship Modeling Conventions [-16
Relating Multiple Tables 1-18
Relational Database Terminology [-19
Relational Database Properties 1-20
Communicating with a RDBMS Using SQL 1-21
Relational Database Management System 1-22
SQL Statements [-23
Tables Used in the Course 1-24

1 Writing Basic SQL SELECT Statements
Objectives 1-2
Capabilities of SQL SELECT Statements 1-3
Basic SELECT Statement 1-4
Selecting All Columns  1-5
Selecting Specific Columns 1-6
Writing SQL Statements 1-7
Column Heading Defaults 1-8
Arithmetic Expressions 1-9
Using Arithmetic Operators 1-10
Operator Precedence 1-11
Using Parentheses 1-13
Defining a Null Value 1-14
Null Values in Arithmetic Expressions 1-15
Defining a Column Alias 1-16
Using Column Aliases 1-17
Concatenation Operator 1-18
Using the Concatenation Operator 1-19
Literal Character Strings 1-20
Using Literal Character Strings 1-21
Duplicate Rows 1-22

Eliminating Duplicate Rows 1-23
11



SQL and iSQL*Plus Interaction 1-24

SQL Statements Versus iSQL*Plus Commands
Overview of iISQL*Plus 1-26

Logging In to iSQL*Plus  1-27

The iSQL*Plus Environment 1-28

Displaying Table Structure 1-29

Interacting with Script Files 1-31

Summary 1-34

Practice Overview 1-35

Restricting and Sorting Data
Objectives 2-2

Limiting Rows Using a Selection 2-3
Limiting the Rows Selected 2-4
Using the WHERE Clause 2-5
Character Strings and Dates 2-6
Comparison Conditions 2-7
Using Comparison Conditions 2-8
Other Comparison Conditions 2-9
Using the BETWEEN Condition 2-10
Using the IN Condition 2-11
Using the LIKE Condition 2-12
Using the NULL Conditions 2-14
Logical Conditions 2-15

Using the AND Operator 2-16
Using the OR Operator 2-17
Using the NOT Operator 2-18
Rules of Precedence 2-19
ORDER BY Clause 2-22

Sorting in Descending Order 2-23
Sorting by Column Alias 2-24
Sorting by Multiple Columns 2-25
Summary 2-26

Practice 2 Overview 2-27

Single-Row Functions

Objectives 3-2

SQL Functions 3-3

Two Types of SQL Functions 3-4
Single-Row Functions 3-5

Single-Row Functions 3-6

Character Functions 3-7

Character Functions 3-8

Case Manipulation Functions 3-9

Using Case Manipulation Functions 3-10

1-25



Character-Manipulation Functions 3-11

Using the Character-Manipulation Functions 3-12
Number Functions 3-13

Using the ROUND Function 3-14

Using the TRUNC Function 3-15

Using the MOD Function 3-16

Working with Dates 3-17

Arithmetic with Dates 3-19

Using Arithmetic Operators with Dates 3-20
Date Functions 3-21

Using Date Functions 3-22

Practice 3, Part One: Overview 3-24
Conversion Functions 3-25

Implicit Data Type Conversion 3-26

Explicit Data Type Conversion 3-28

Using the TO_CHAR Function with Dates 3-31
Elements of the Date Format Model 3-32
Using the TO_CHAR Function with Dates 3-36
Using the TO_CHAR Function with Numbers 3-37
Using the TO_NUMBER and TO_DATE Functions 3-39
RR Date Format 3-40

Example of RR Date Format 3-41

Nesting Functions 3-42

General Functions 3-44

NVL Function 3-45

Using the NVL Function 3-46

Using the NVL2 Function 3-47

Using the NULLIF Function 3-48

Using the COALESCE Function 3-49
Conditional Expressions 3-51

The CASE Expression 3-52

Using the CASE Expression 3-53

The DECODE Function 3-54

Using the DECODE Function 3-55

Summary 3-57

Practice 3, Part Two: Overview 3-58

Displaying Data from Multiple Tables
Objectives 4-2

Obtaining Data from Multiple Tables 4-3
Cartesian Products 4-4

Generating a Cartesian Product 4-5
Types of Joins 4-6

Joining Tables Using Oracle Syntax 4-7
What is an Equijoin? 4-8



Retrieving Records with Equijoins  4-9
Additional Search Conditions Using the AND Operator 4-10
Qualifying Ambiguous Column Names 4-11
Using Table Aliases 4-12

Joining More than Two Tables 4-13
Non-Equijoins 4-14

Retrieving Records with Non-Equijoins 4-15
Outer Joins 4-16

Outer Joins Syntax 4-17

Using Outer Joins 4-18

Self Joins 4-19

Joining a Table to Itself 4-20

Practice 4, Part One: Overview 4-21

Joining Tables Using SQL: 1999 Syntax 4-22
Creating Cross Joins 4-23

Creating Natural Joins 4-24

Retrieving Records with Natural Joins 4-25
Creating Joins with the USI NG Clause 4-26
Retrieving Records with the USI NG Clause 4-27
Creating Joins with the ON Clause 4-28
Retrieving Records with the ON Clause 4-29
Creating Three-Way Joins with the ON Clause 4-30
| NNER Versus OQUTER Joins 4-31

LEFT QUTER JO N  4-32

RI GHT QUTER JO N  4-33

FULL QUTER JON 4-34

Additional Conditions 4-35

Summary 4-36

Practice 4, Part Two: Overview 4-37

Aggregating Data Using Group Functions
Objectives 5-2

What Are Group Functions? 5-3

Types of Group Functions 5-4

Group Functions Syntax 5-5

Using the AVG and SUM Functions 5-6

Using the MIN and MAX Functions 5-7

Using the COUNT Function 5-8

Using the DISTINCT Keyword 5-10

Group Functions and Null Values 5-11

Using the NVL Function with Group Functions 5-12
Creating Groups of Data 5-13

Creating Groups of Data: The GROUP BY Clause Syntax 5-14
Using the GROUP BY Clause 5-15

Grouping by More Than One Column 5-17

Vi



Using the GROUP BY Clause on Multiple Columns 5-18
lllegal Queries Using Group Functions 5-19

Excluding Group Results 5-21

Excluding Group Results: The HAVING Clause 5-22
Using the HAVING Clause 5-23

Nesting Group Functions 5-25

Summary 5-26

Practice 5 Overview 5-27

Subqueries

Objectives 6-2

Using a Subquery to Solve a Problem 6-3

Subquery Syntax 6-4

Using a Subquery 6-5

Guidelines for Using Subqueries 6-6

Types of Subqueries 6-7

Single-Row Subqueries 6-8

Executing Single-Row Subqueries 6-9

Using Group Functions in a Subquery 6-10

The HAVING Clause with Subqueries 6-11

What is Wrong with this Statement? 6-12

Will this Statement Return Rows? 6-13

Multiple-Row Subqueries 6-14

Using the ANY Operator in Multiple-Row Subqueries 6-15
Using the ALL Operator in Multiple-Row Subqueries 6-16
Null Values in a Subquery 6-17

Summary 6-18

Practice 6 Overview 6-19

Producing Readable Output with iSQL*Plus

Objectives 7-2

Substitution Variables 7-3

Using the & Substitution Variable 7-5

Character and Date Values with Substitution Variables 7-7
Specifying Column Names, Expressions, and Text 7-8
Defining Substitution Variables 7-10

DEFINE and UNDEFINE Commands 7-11

Using the DEFINE Command with & Substitution Variable 7-12
Using the && Substitution Variable 7-13

Using the VERIFY Command 7-14

Customizing the iISQL*Plus Environment 7-15

SET Command Variables 7-16

iSQL*Plus Format Commands 7-17

The COLUMN Command 7-18

Using the COLUMN Command 7-19

Vii



COLUMN Format Models 7-20

Using the BREAK Command 7-21

Using the TTITLE and BTITLE Commands 7-22
Creating a Script File to Run a Report 7-24
Sample Report 7-26

Summary 7-28

Practice 7 Overview 7-29

Manipulating Data

Objectives 8-2

Data Manipulation Language 8-3

Adding a New Row to a Table 8-4

The INSERT Statement Syntax 8-5

Inserting New Rows 8-6

Inserting Rows with Null Values 8-7

Inserting Special Values 8-8

Inserting Specific Date Values 8-9

Creating a Script  8-10

Copying Rows from Another Table 8-11
Changing Data in a Table 8-12

The UPDATE Statement Syntax 8-13

Updating Rows in a Table 8-14

Updating Two Columns with a Subquery 8-15
Updating Rows Based on Another Table 8-16
Updating Rows: Integrity Constraint Error 8-17
Removing a Row from a Table 8-18

The DELETE Statement 8-19

Deleting Rows from a Table 8-20

Deleting Rows Based on Another Table 8-21
Deleting Rows: Integrity Constraint Error 8-22
Using a Subquery in an INSERT Statement 8-23
Using the WITH CHECK OPTION Keyword on DML Statements 8-25
Overview of the Explicit Default Feature 8-26
Using Explicit Default Values 8-27

The MERGE Statement 8-28

The MERGE Statement Syntax 8-29

Merging Rows 8-30

Database Transactions 8-32

Advantages of COMMIT and ROLLBACK Statements 8-34
Controlling Transactions 8-35

Rolling Back Changes to a Marker 8-36

Implicit Transaction Processing 8-37

State of the Data Before COMMIT or ROLLBACK 8-38
State of the Data after COMMIT 8-39
Committing Data 8-40

viii



State of the Data After ROLLBACK 8-41
Statement-Level Rollback 8-42

Read Consistency 8-43

Implementation of Read Consistency 8-44
Locking 8-45

Implicit Locking 8-46

Summary 8-47

Practice 8 Overview 8-48

Read Consistency Example 8-53

Creating and Managing Tables

Objectives 9-2

Database Objects 9-3

Naming Rules 9-4

The CREATE TABLE Statement 9-5
Referencing Another User’'s Tables 9-6

The DEFAULT Option 9-7

Creating Tables 9-8

Tables in the Oracle Database 9-9

Querying the Data Dictionary 9-10

Data Types 9-11

DateTime Data Types 9-13

TIMESTAMP WITH TIME ZONE Data Type 9-15
TIMESTAMP WITH LOCAL TIME Data Type 9-16
INTERVAL YEAR TO MONTH Data Type 9-17
INTERVAL DAY TO SECOND Data Type 9-18
Creating a Table by Using a Subquery Syntax 9-20
Creating a Table by Using a Subquery 9-21

The ALTER TABLE Statement 9-22

Adding a Column 9-24

Modifying a Column 9-26

Dropping a Column 9-27

The SET UNUSED Option 9-28

Dropping a Table 9-29

Changing the Name of an Object 9-30
Truncating a Table 9-31

Adding Comments to a Table 9-32

Summary 9-33

Practice 9 Overview 9-34



10 Including Constraints
Objectives 10-2
What are Constraints? 10-3
Constraint Guidelines 10-4
Defining Constraints 10-5
The NOT NULL Constraint 10-7
The UNIQUE Constraint 10-9
The PRIMARY KEY Constraint 10-11
The FOREIGN KEY Constraint 10-13
FOREIGN KEY Constraint Keywords 10-15
The CHECK Constraint 10-16
Adding a Constraint Syntax 10-17
Adding a Constraint 10-18
Dropping a Constraint 10-19
Disabling Constraints 10-20
Enabling Constraints 10-21
Cascading Constraints 10-22
Viewing Constraints 10-24
Viewing the Columns Associated with Constraints 10-25
Summary 10-26
Practice 10 Overview 10-27

11 Creating Views
Objectives 11-2
Database Objects 11-3
What is a View? 11-4
Why use Views? 11-5
Simple Views and Complex Views 11-6
Creating a View 11-7
Retrieving Data from a View 11-10
Querying a View 11-11
Modifying a View 11-12
Creating a Complex View 11-13
Rules for Performing DML Operations on a View 11-14
Using the WITH CHECK OPTION Clause 11-17
Denying DML Operations 11-18
Removing a View 11-20
Inline Views 11-21
Top-N Analysis 11-22
Performing Top-N Analysis 11-23
Example of Top-N Analysis 11-24
Summary 11-25
Practice 11 Overview 11-26



12 Other Database Objects
Objectives 12-2
Database Objects 12-3
What is a Sequence? 12-4
The CREATE SEQUENCE Statement Syntax 12-5
Creating a Sequence 12-6
Confirming Sequences 12-7
NEXTVAL and CURRVAL Pseudocolumns 12-8
Using a Sequence 12-10
Modifying a Sequence 12-12
Guidelines for Modifying a Sequence 12-13
Removing a Sequence 12-14
What is an Index? 12-15
How Are Indexes Created? 12-16
Creating an Index 12-17
When to Create an Index 12-18
When Not to Create an Index 12-19
Confirming Indexes 12-20
Function-Based Indexes 12-21
Removing an Index 12-23
Synonyms 12-24
Creating and Removing Synonyms 12-25
Summary 12-26
Practice 12 Overview 12-27

13 Controlling User Access
Objectives 13-2
Controlling User Access 13-3
Privileges 13-4
System Privileges 13-5
Creating Users 13-6
User System Privileges 13-7
Granting System Privileges 13-8
What is a Role? 13-9
Creating and Granting Privileges to a Role 13-10
Changing Your Password 13-11
Object Privileges 13-12
Granting Object Privileges 13-14
Using the WITH GRANT OPTION and PUBLIC Keywords 13-15
Confirming Privileges Granted 13-16
How to Revoke Obiject Privileges 13-17
Revoking Obiject Privileges 13-18
Database Links 13-19
Summary 13-21
Practice 13 Overview 13-22

Xi



14 SQL Workshop
Workshop Overview 14-2

15 Using SET Operators
Objectives 15-2
The SET Operators 15-3
Tables Used in This Lesson 15-4
The UNION Operator 15-7
Using the UNION Operator 15-8
The UNION ALL Operator 15-10
Using the UNION ALL Operator 15-11
The INTERSECT Operator 15-12
Using the INTERSECT Operator 15-13
The MINUS Operator 15-14
SET Operator Guidelines 15-16
The Oracle Server and SET Operators 15-17
Matching the SELECT Statements 15-18
Controlling the Order of Rows 15-20
Summary 15-21
Practice 15 Overview 15-22

16 Oracle9i Datetime Functions
Objectives 16-2
TIME ZONES 16-3
Oracle9i Datetime Support 16-4
TZ OFFSET 16-6
CURRENT_DATE 16-8
CURRENT_TIMESTAMP 16-9
LOCALTIMESTAMP 16-10
DBTIMEZONE and SESSIONTIMEZONE 16-11
EXTRACT 16-12
TIMESTAMP Conversion Using FROM_TZ 16-13
STRING To TIMESTAMP Conversion Using TO_TIMESTAMP and
TO_TIMESTAMP_TZ 16-14
Time Interval Conversion with TO_YMINTERVAL 16-15
Summary 16-16
Practice 16 Overview 16-17

17 Enhancements to the GROUP BY Clause
Objectives 17-2
Review of Group Functions 17-3
Review of the GROUP BY Clause 17-4
Review of the HAVING Clause 17-5
GROUP BY with ROLLUP and CUBE Operators 17-6
ROLLUP Operator 17-7
ROLLUP Operator Example 17-8

Xii



18

19

CUBE Operator 17-9

CUBE Operator: Example 17-10
GROUPING Function 17-11
GROUPING Function: Example 17-12
GROUPING SETS 17-13
GROUPING SETS: Example 17-15
Composite Columns 17-17
Composite Columns: Example 17-19
Concatenated Groupings 17-21
Concatenated Groupings Example 17-22
Summary 17-23

Practice 17 Overview 17-24

Advanced Subqueries

Objectives 18-2

What Is a Subquery? 18-3

Subqueries 18-4

Using a Subquery 18-5
Multiple-Column Subqueries 18-6
Column Comparisons 18-7

Pairwise Comparison Subquery 18-8
Nonpairwise Comparison Subquery 18-9
Using a Subquery in the FROM Clause 18-10
Scalar Subquery Expressions 18-11
Scalar Subqueries: Examples 18-12
Correlated Subqueries 18-14

Using Correlated Subqueries 18-16
Using the EXISTS Operator 18-18
Using the NOT EXISTS Operator 18-20
Correlated UPDATE 18-21

Correlated DELETE 18-24

The WITH Clause 18-26

WITH Clause: Example 18-27
Summary 18-29

Practice 18 Overview 18-31

Hierarchical Retrieval
Objectives 19-2
Sample Data from the EMPLOYEES Table 19-3
Natural Tree Structure 19-4

Hierarchical Queries 19-5

Walking the Tree 19-6

Walking the Tree: From the Bottom Up 19-8
Walking the Tree: From the Top Down 19-9

Ranking Rows with the LEVEL Pseudocolumn 19-10

Xiii



20

m O O W >»

Formatting Hierarchical Reports Using LEVEL and LPAD 19-11

Pruning Branches 19-13
Summary 19-14
Practice 19 Overview 19-15

Oracle9i Extensions to DML and DDL Statements
Objectives 20-2

Review of the INSERT Statement 20-3

Review of the UPDATE Statement 20-4
Overview of Multitable INSERT Statements 20-5
Overview of Multitable INSERT Statements 20-6
Types of Multitable INSERT Statements 20-7
Multitable INSERT Statements 20-8
Unconditional INSERT ALL 20-10

Conditional INSERT ALL 20-11

Conditional FIRST INSERT 20-13

Pivoting INSERT 20-15

External Tables 20-18

Creating an External Table 20-19

Example of Creating an External Table 20-20
Querying External Tables 20-23

CREATE INDEX with CREATE TABLE Statement 20-24

Summary 20-25
Practice 20 Overview 20-26

Practice solutions

Table Descriptions and Data
Using SQL* Plus

Writing Advanced Scripts

Oracle Architectural Components
Index

Additional Practices

Additional Practice Solutions

Additional Practices Table and Descriptions

Xiv



Creating Views

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Schedule: Timing Topic
20 minutes Lecture
20 minutes Practice

40 minutes Totd




Objectives

After completing this lesson, you should be able
to do the following:

* Describe aview
* C(Create, alter the definition of, and drop a view
* Retrieve data through a view

* Insert, update, and delete data through
aview

® C(Create and use an inline view
* Perform “Top-N" analysis

11-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn how to create and use views. Y ou also learn to query the relevant data
dictionary object to retrieve information about views. Finally, you learn to create and use inline views,
and perform Top-N analysis using inline views.

Introduction to Oracle9i: SQL 11-2




11-3

Database Objects

Object Description

Table Basic unit of storage; composed of rows
and columns

View Logically represents subsets of data from
one or more tables

Sequence Generates primary key values

Index Improves the performance of some queries

Synonym Alternative name for an object

Copyright © Oracle Corporation, 2001. All rights reserved.

Introduction to Oracle9i: SQL 11-3




What is a View?

EMPLOYEES Table:
[EMPLOYEE_ID [FIRST_NAME [LAST NAME| EMAIL |[PHONE_NUMBER |[HIRE DATE| JOB.ID [SALA
| 100 [Steven [King [SKING [515.123 4567 [17-June7 [AD_PRES || 2400
| 101 [Meena [Kochhar  [NKOCHHAR [515.123 4568 [21-sEP-83 [AD_WP [ 17
| 102 |[Lex [De Haan  |[LDEHAAN [[515.123 4569 [13-JaM93 [[AD_vP 170
| 103 [Alexander  [Hunold [AHUNOLD 590 423 4567 [p3-Jan-90 [[IT_PROG [ o
| 174 [Bruce |Ermst [BERMST  [590.423.4565 [21-may-81 [IT_PROG I
| 107 |Diana [Lorentz [DLORENTZ [[590.423 5567 [o7-FEB-99 [IT_PROG. 42
| 124 [Kevin [Mourgos  [KMOURGOS [650.123 5234 [16-NOV-99 |57 har
| 141 [Trenna [Rajs [TRAJS [p50.121 8009 [17-0CT88 [5FCLERK 38
142 [Curtis [Davies [cDaviES  [ps0. 1212994 29N [ST_CLERK [ 3
/:/ 143 [Randall [Matos [RMATOS  [650.121.2674 [15maR8 (ST CLERK [ 28
| EMPLOYEE_ID | LAST_NAME [ saLaRy &
| 149 [Zlotkey | 10500 105
| 174 [abel | 11000 || SA_REP [ o
| 176 |[Taylor | 8600 SA_REP | &8
| 17O |PITILETEY LD [P Iy SA_REP m
| 200 |[Jennifer [whalen [WWHALEN 515123 4444 [17-5EP-87 |[aD_ASST a4
| 201 [Michael [Hartstein  [MHARTSTE |[515.123 5555 [17-FEB-9E MK _MAN [ 130
| 202 [Pat [Fay [PFaY [603.123 6666 [17-8UG-97 |[MK_REF [ en
| 205 [Shelley [Higgins [SHIGGINS  [515.123.8080 [p7-Jun-9s [[ac_MGR 120
| 206 |[william [Gistz [WGIETZ  [515.123.8181 [o7-Jun-ad [aC_ACCOUNT| &3
20 rows selected.

11-4 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a View?

Y ou can present logical subsets or combinations of data by creating views of tables. A view isa
logical table based on atable or another view. A view contains no data of its own but is like a window
through which data from tables can be viewed or changed. The tables on which aview isbased are
called base tables. The view is stored as a SELECT statement in the data dictionary.

Instructor Note
Demo: 11_easyvu. sql

Purpose: The view shown on the dideis created as follows:
CREATE OR REPLACE VI EW si npl e_vu
AS SELECT enpl oyee_id, |ast_nane, salary
FROM  enpl oyees;

Introduction to Oracle9i: SQL 11-4




Why Use Views?

®* To restrict data access

* To make complex queries easy

* To provide data independence

* To present different views of the same data

11-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of Views
» Viewsredtrict accessto the data because the view can display selective columns from the table.

*  Views can be used to make simple queries to retrieve the results of complicated queries. For
example, views can be used to query information from multiple tables without the user knowing
how to write ajoin statement.

* Views provide dataindependence for ad hoc users and application programs. One view can be
used to retrieve data from severa tables.

* Views provide groups of users access to data according to their particular criteria.
For more information, see Oracle9i QL Reference, “CREATE VI EW’

Introduction to Oracle9i: SQL 11-5




Simple Views
and Complex Views

Feature Simple Views | Complex Views
Number of tables One One or more
Contain functions No Yes
Contain groups of data | No Yes
DML operations
through aview Yes Not always

11-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Simple Views versus Complex Views

There are two classifications for views. simple and complex. The basic differenceis related to the
DML (I NSERT, UPDATE, and DELETE) operations.

* A simpleview isone that:
— Derives datafrom only onetable
— Contains no functions or groups of data
— Can perform DML operations through the view
e A complex view isone that:
— Derives datafrom many tables
— Contains functions or groups of data
— Does not always allow DML operations through the view

Introduction to Oracle9i: SQL 11-6



You embed a subquery within the CREATE VI EW

statement.

Creating a View

[ (alias][,
AS subquery
[WTH CHECK OPTI ON [ CONSTRAI NT constraint]]
[ WTH READ ONLY [ CONSTRAI NT constraint]];

CREATE [ OR REPLACE] [ FORCE| NOFORCE] VI EW vi ew
alias]...)]

The subquery can contain complex SELECT

syntax.
11-7 Copyright © Oracle Corporation, 2001. All rights reserved.
Creating a View
Y ou can create a view by embedding a subquery within the CREATE VI EWstatement.
In the syntax:
OR REPLACE re-createsthe view if it already exists
FORCE creates the view regardless of whether or not the base tables exist
NOFORCE creates the view only if the base tables exist (Thisisthe default.)
Vi ew isthe name of the view
alias specifies names for the expressions selected by the view’ s query
(The number of aiases must match the number of expressions
selected by the view.)
subquery isacomplete SELECT statement (Y ou can use diases for the

W TH CHECK OPTI ON

constraint

W TH

READ ONLY

columnsin the SELECT list.)

specifies that only rows accessible to the view can be inserted or
updated

is the name assigned to the CHECK OPTI ON constraint

ensures that no DML operations can be performed on this view

Introduction to Oracle9i: SQL 11-7



Creating a View

* (Create aview, EMPVUSO, that contains details of
employees in department 80.

CREATE VI EW enpvu80
AS SELECT enployee_id, |ast_nane, salary
FROM enpl oyees
WHERE departnent _id = 80;
Vi ew cr eat ed.

®* Describe the structure of the view by using the
ISQL*Plus DESCRI BE command.

| DESCRI BE enpvu80 I

11-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a View (continued)

The example on the dide creates aview that contains the employee number, last name, and salary for
each employee in department 80.

Y ou can display the structure of the view by using the iISQL* Plus DESCRI BE command.

| Mame | Hull? | Type
[EMPLOYEE_ID IMOT NULL INUMBER(E)
ILAST_NAME IMOT MULL WARCHARZ(25)

| SALARY | IMUMBER(3 2)

Guidelinesfor creating aview:

« Thesubquery that defines aview can contain complex SELECT syntax, including joins, groups,
and subqueries.

« Thesubquery that defines the view cannot contain an ORDER BY clause. The ORDER BY
clause is specified when you retrieve data from the view.

« If you do not specify a constraint name for aview created with the W TH CHECK OPTI ON,
the system assigns a default name in the format SYS_Cn.

* Youcanusethe OR REPLACE option to change the definition of the view without dropping
and re-creating it or regranting object privileges previously granted onit.

Introduction to Oracle9i: SQL 11-8



Creating a View

®* C(Create aview by using column aliases in the
subquery.

CREATE VI EW sal vu50
AS SELECT enployee_ id I D NUMBER, | ast_name NAME,
sal ary*12 ANN_SALARY
FROM enpl oyees
WHERE departnent _id = 50;
Vi ew cr eat ed.

® Select the columns from this view by the given
alias names.

11-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a View (continued)
Y ou can control the column names by including column aliases within the subguery.

The example on the slide creates a view containing the employee number (EMPLOYEE_| D) with the
dias| D_NUMBER, name (LAST_NAME) with the alias NAME, and annual salary (SALARY) with the
alias ANN_SALARY for every employeein department 50.

As an alternative, you can use an alias after the CREATE statement and prior to the SELECT
subguery. The number of aiases listed must match the number of expressions selected in the
subquery.

CREATE VI EW sal vu50 (I D_NUMBER, NAME, ANN_SALARY)
AS SELECT enployee_ id, |last_name, salary*12
FROM enpl oyees
VWHERE  departnent _id = 50;
Vi ew creat ed.

Instructor Note

L et students know about materialized views or snapshots. The terms snapshot and materialized view
are synonymous. Both refer to atable that contains the results of a query of one or more tables, each
of which may be located on the same or on aremote database. The tables in the query are called
master tables or detail tables. The databases containing the master tables are called the master
databases. For more information regarding materialized views refer to: Oracle9i SQL Reference,
“CREATE MATERI ALI ZED VI EW/ SNAPSHOT.”

Introduction to Oracle9i: SQL 11-9




Retrieving Data from a View

SELECT *
FROM | sal vu50|

ID_NUMBER | NAME |
124 [Mourgos | 9600
141 [Rajs | 42000
142 [Davies | 37200
|
|

ANN_SALARY

143 [Matos 31200
144 |[vargas 30000

‘ 11-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Data from a View

Y ou can retrieve datafrom aview as you would from any table. Y ou can display either the contents of
the entire view or just specific rows and columns.

Introduction to Oracle9i: SQL 11-10



Querying a View

Oracle Server

a iSOL*Plus I

USER VI EWS
SELECT * EMPVUBO
FROM enpvu80; > SELECT enpl oyee_i d,

| ast _name, salary
EMPLOYEE_ID [LAST NAME [SALARY FROM enpl oyees
149 [Zlotkey [ 10500

|

| L d—an-
i 174 [Abe o0 VWHERE depart ment i d=80;
| 176 |[Taylor [ eem0

EMPLOYEES

‘ 11-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Views in the Data Dictionary

Once your view has been created, you can query the data dictionary view called USER_VI EW5 to see

the name of the view and the view definition. The text of the SELECT statement that constitutes your
view is stored in a LONG column.

Data Access Using Views

When you access data using a view, the Oracle server performs the following operations:
1. It retrievesthe view definition from the data dictionary table USER_VI EV\&.
2. It checks access privileges for the view base table.

3. It convertsthe view query into an equivalent operation on the underlying base table or tables. In
other words, datais retrieved from, or an update is made to, the base tables.

Instructor Note

The view text is stored in a column of LONG datatype. Y ou may need to set ARRAYSI ZE to a smaller
value or increase the value of LONGto view the text.

Introduction to Oracle9i: SQL 11-11




Modifying a View

* Modify the EMPVUBO0 view by using CREATE OR
REPLACE VI EWclause. Add an alias for each
column name.

CREATE OR REPLACE VI EW enpvu80
(id_nunber, name, sal, departnent _id)
AS SELECT enployee_ id, first_nanme || ' ' || l|ast_nane,
sal ary, departnent _id
FROM enpl oyees
VWHERE departnent _id = 80;
Vi ew creat ed.

® Column aliases in the CREATE VI EWclause are

listed in the same order as the columns in the
subquery.

11-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Modifying a View

With the OR REPLACE option, aview can be created even if one exists with this name aready, thus
replacing the old version of the view for its owner. This means that the view can be altered without
dropping, re-creating, and regranting object privileges.

Note: When assigning column aliasesin the CREATE VI EWclause, remember that the aliases are
listed in the same order as the columns in the subquery.

Instructor Note

The OR REPLACE option started with Oracle7. With earlier versions of Oracle, if the view needed to
be changed, it had to be dropped and re-created.

Demo: 11_enp. sql
Purpose: To illustrate creating a view using aliases

Introduction to Oracle9i: SQL 11-12




Creating a Complex View

Create a complex view that contains group functions
to display values from two tables.

CREATE VI EWdept _sum vu
(nanme, mnsal, maxsal, avgsal)
AS SELECT d. departnment _nane, M N(e. sal ary),
MAX(e. sal ary), AVE e. sal ary)
FROM enpl oyees e, departnents d
WHERE e.departnent _id = d.departnent _id
GROUP BY d. departnent _nane;
Vi ew cr eat ed.

11-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Complex View

The example on the dlide creates acomplex view of department names, minimum salaries, maximum
salaries, and average sdaries by department. Note that alternative names have been specified for the
view. Thisisarequirement if any column of the view is derived from a function or an expression.

Y ou can view the structure of the view by using the iSQL* Plus DESCRI BE command. Display the
contents of the view by issuing a SELECT statement.

SELECT ~*
FROM dept _sum vu;

| NAME | MINSAL | MAXSAL | AVGSAL

iAccounting | 300 | 12000 | 10150
\dministration | 4400 | 4400 | 4400
[Executive | 17000 | 24000 | 19333.3333
I | 4200 | 9000 | G400
IMarketing | OO0 | 13000 | 9500
Sales | AG00 | 11000 | 10033.3333
|Shipping | 2600 | 5800 | 3600

7 rows selected.

Introduction to Oracle9i: SQL 11-13




Rules for Performing
DML Operations on a View

®* You can perform DML operations on simple views.

®* You cannot remove arow if the view contains the
following:
— Group functions
— A GROUP BY clause
— The DI STI NCT keyword
— The pseudocolumn ROWNUMkeyword

11-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Performing DML Operations on a View
Y ou can perform DML operations on data through a view if those operations follow certain rules.
Y ou can remove arow from aview unlessit contains any of the following:

e Group functions

* A GROUP BY clause

e TheDl STI NCT keyword

e The pseudocolumn ROWNUMkeyword

Instructor Note
For each row returned by a query, the ROANUM pseudocolumn returns a number indicating the order
in which Oracle server selectsthe row from atable or set of joined rows. The first row selected has a
ROWNUMof 1, the second has 2, and so on.

Introduction to Oracle9i: SQL 11-14



Rules for Performing
DML Operations on a View

You cannot modify data in a view if it contains:
® Group functions

e A GROUP BY clause

®* The DI STI NCT keyword

®* The pseudocolumn ROANUMkeyword

® Columns defined by expressions

11-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Performing DML Operations on a View (continued)

Y ou can modify data through aview unless it contains any of the conditions mentioned in the previous
dide or columns defined by expressions—for example, SALARY * 12,

Introduction to Oracle9i: SQL 11-15



Rules for Performing
DML Operations on a View

You cannot add data through a view if the view
includes:

® Group functions

* A GROUP BY clause

* The DI STI NCT keyword

®* The pseudocolumn ROANUMkeyword
® Columns defined by expressions

* NOT NULL columns in the base tables that are not
selected by the view

‘ 11-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Performing DML Operations on a View (continued)

Y ou can add data through aview unlessit contains any of theitemslisted in the dlide or there are NOT
NULL columns without default valuesin the base table that are not selected by the view. All required
values must be present in the view. Remember that you are adding values directly into the underlying
table through the view.

For more information, see Oracle9i SQL Reference, “CREATE VI EW’

Instructor Note
With Oracle7.3 and later, you can modify views that involve joins with some restrictions. The
restrictions for DML operations described in the dide also apply to join views. Any UPDATE,
| NSERT, or DELETE statement on ajoin view can modify only one underlying base table. If at least
one column in the subguery join has a unique index, then it may be possible to modify one basetablein
ajoin view. You can query USER_UPDATABLE COLUMNS to see whether the columnsin ajoin view
can be updated.

Introduction to Oracle9i: SQL 11-16



Using the W TH CHECK OPTIl ON Clause

®* You can ensure that DML operations performed on
the view stay within the domain of the view by
using the W TH CHECK OPTI ONclause.

CREATE OR REPLACE VI EW enpvu20
AS SELECT *

FROM enpl oyees

VWHERE departnent _id = 20

W TH CHECK OPTI ON CONSTRAI NT enpvu20_ck ;
Vi ew cr eat ed.

* Any attempt to change the department number for
any row in the view fails because it violates the
W TH CHECK OPTI ON constraint.

11-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the W TH CHECK OPTI ONClause
It is possible to perform referential integrity checks through views. Y ou can also enforce congtraints at
the database level. The view can be used to protect data integrity, but the useis very limited.

TheW TH CHECK OPTI ON clause specifiesthat | NSERTs and UPDATESs performed through the
view cannot create rows which the view cannot select, and therefore it allows integrity constraints and
data validation checks to be enforced on data being inserted or updated.

If thereis an attempt to perform DML operations on rows that the view has not selected, an error is
displayed, with the constraint name if that has been specified.

UPDATE enpvu20
SET departnent _id
WHERE enpl oyee id =
UPDATE enpvu20
*

0

=1
201;

ERROR at line 1:
ORA-01402: view WTH CHECK OPTI ON wher e-cl ause vi ol ation

Note: No rows are updated because if the department number were to changeto 10, the view would
no longer be able to see that employee. Therefore, withthe W TH CHECK OPTI ON clause, the view
can see only employeesin department 20 and does not allow the department number for those
employeesto be changed through the view.

Introduction to Oracle9i: SQL 11-17



Denying DML Operations

®* You can ensure that no DML operations occur by
adding the W TH READ ONLY option to your view

definition.

* Any attempt to perform a DML on any row in the
view results in an Oracle server error.

‘ 11-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Denying DML Operations
Y ou can ensure that no DML operations occur on your view by creating it with the W TH READ
ONLY option. The example on the dide modifies the EMPVULO view to prevent any DML operations
on the view.

Instructor Note (for pages 11-17)
If the user does not supply a constraint name, the system assigns a name in the form SYS_Cn, where
n isan integer that makes the constraint name unique within the system.

Introduction to Oracle9i: SQL 11-18



Denying DML Operations

CREATE OR REPLACE VI EW enpvulO
(empl oyee_nunber, enpl oyee_nane, job_title)
AS SELECT enployee_id, |last_name, job_id
FROM enpl oyees
VWHERE departnment _id = 10
W TH READ ON\LY;
Vi ew cr eat ed.

11-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Denying DML Operations
Any attemptsto remove arow from aview with aread-only constraint resultsin an error.
DELETE FROM enpvulO

WHERE enpl oyee_nunber = 200;
DELETE FROM enpvulO
*

ERROR at |ine 1:
ORA-01752: cannot delete from view wi thout exactly one key-
preserved table

Any attempt to insert arow or modify arow using the view with aread-only constraint resultsin Oracle

Server error:
01733: virtual columm not all owed here.

Introduction to Oracle9i: SQL 11-19




Removing a View

You can remove a view without losing data because a
view is based on underlying tables in the database.

DROP VI EW vi ew; I

DROP VI EW enpvu80;
Vi ew dr opped.
11-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing a View
Y ou use the DROP VI EWstatement to remove aview. The statement removes the view definition

from the database. Dropping views has no effect on the tables on which the view was based. Views or
other applications based on deleted views become invalid. Only the creator or a user with the DROP

ANY VI EWprivilege can remove aview.
In the syntax:
Vi ew isthe name of the view

Introduction to Oracle9i: SQL 11-20



Inline Views

®* Aninline view is a subquery with an alias (or
correlation name) that you can use within a SQL
statement.

* A named subquery in the FROMclause of the main
guery is an example of an inline view.

* Aninline view is not a schema object.

11-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Inline Views

Aninline view is created by placing a subguery in the FROMclause and giving that subquery an adias.
The subquery defines a data source that can be referenced in the main query. In the following example,
theinline view b returns the details of all department numbers and the maximum salary for each
department from the EMPLOYEES table. TheWHERE a. departnent _id = b. departnent _id
AND a. sal ary < b. maxsal clause of the main query displays employee names, salaries,
department numbers, and maximum salaries for all the employees who earn less than the maximum
sdary in their department.

SELECT a.last_nane, a.salary, a.departnent _id, b.naxsal

FROM enpl oyees a, (SELECT departnent_id, max(sal ary) naxsal
FROM enpl oyees
GROUP BY departnent _id) b

WHERE a.departnent _id = b.departnent _id

AND a.sal ary < b.maxsal;
| LAST NAME | SALARY | DEPARTMENT _ID | MAXSAL
Fay | OO0 | 20 | 13000
Rajs | 3600 | 50 | 5800
Davies | 00 | A0 | 5800
IMatos | 2600 | a0 | 5800
Margas | 2600 | a0 | 5800

12 rows selected.
Introduction to Oracle9i: SQL 11-21



Top-N Analysis

®* Top-N queries ask for the n largest or smallest
values of a column. For example:

— What are the ten best selling products?
— What are the ten worst selling products?

* Both largest values and smallest values sets are
considered Top-N queries.

11-22 Copyright © Oracle Corporation, 2001. All rights reserved.

“Top-N" Analysis

Top-N queries are useful in scenarios where the need isto display only the n top-most or the n
bottom-most records from a table based on a condition. This result set can be used for further anaysis.
For example, using Top-N analysis you can perform the following types of queries:

e Thetop three earnersin the company

*  Thefour most recent recruitsin the company

e Thetop two sales representatives who have sold the maximum number of products
e Thetop three products that have had the maximum salesin the last six months

Instructor Note
The capability to include the ORDER BY clause in a subquery makes Top-N analysis possible.

Introduction to Oracle9i: SQL 11-22




Performing Top-N Analysis

The high-level structure of a Top-N analysis
query is:

SELECT [colum_list], ROANUM
FROM  (SELECT [columm_li st]
FROM t abl e
ORDER BY Top- N_col um)
VWHERE ROMUM <= N;

11-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Performing “Top-N" Analysis
Top-N queries use a consistent nested query structure with the elements described bel ow:

e A subquery or an inline view to generate the sorted list of data. The subquery or theinline view
includesthe ORDER BY clause to ensure that the ranking isin the desired order. For results
retrieving the largest values, a DESC parameter is needed.

* Anouter query to limit the number of rowsin the final result set. The outer query includes the
following components:

— The ROWNUMpseudocolumn, which assigns a sequential value starting with 1 to each of
the rows returned from the subquery.

— A WHERE clause, which specifies the n rows to be returned. The outer WHERE clause
must usea< or <= operator.

Introduction to Oracle9i: SQL 11-23



Example of Top-N Analysis

To display the top three earner names and salaries
from the EMPLOYEES table:

SELECT ROMNUM as RANK, || ast_nane, |sal ary

FROM ( SELECT [ ast _nane, sal ary FROM enpl oyees
ORDER BY sal ary DESC)

WHERE ROMUM <= 3;

[] RANK LAST_NAME | SALARY

(] 1] King 24000

(] 2| Kochhar 17000

(] 3| De Haan 17000
11-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of “Top-N" Analysis

The example on the dide illustrates how to display the names and salaries of the top three earners
from the EMPLOYEES table. The subquery returns the details of all employee names and salaries from
the EMPLOYEES table, sorted in the descending order of the salaries. The WHERE ROWNUM < 3
clause of the main query ensures that only the first three records from this result set are displayed.

Hereis another example of Top-N analysisthat uses an inline view. The example below uses the
inline view E to display the four most senior employees in the company.

SELECT ROMNUM as SENI OR, E. |l ast _nane, E.hire_date

FROM ( SELECT | ast_nane, hire_date FROM enpl oyees
ORDER BY hire_date)E

VWHERE r ownum <= 4;

| SENIOR | LAST_NAME | HIRE_DATE
| 1 |King 17-JUN-87
| 2 [Whalen 117-SEP-87
| 3 |Kochhar 21-5EP-B3
| 4 |Hunold 03-JAN-30

Introduction to Oracle9i: SQL 11-24




Summary

In this lesson, you should have learned that a view is
derived from data in other tables or views and
provides the following advantages:

®* Restricts database access

* Simplifies queries

®* Provides data independence

* Provides multiple views of the same data

® (Can be dropped without removing the underlying
data

* Aninlineview is a subquery with an alias name.

®* Top-N analysis can be done using subqueries and
outer queries.

‘ 11-25 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a View?

A view is based on atable or another view and acts as a window through which data on tables can be
viewed or changed. A view does not contain data. The definition of the view is stored in the data
dictionary. Y ou can see the definition of the view in the USER_VI EWS data dictionary table.

Advantages of Views

* Redtrict database access

e Simplify queries

e Provide dataindependence

e Provide multiple views of the same data

e Can be removed without affecting the underlying data
View Options

e Canbeasmpleview, based on onetable

* Can beacomplex view based on more than one table or can contain groups of functions

e Can replace other views with the same name

» Can contain a check constraint

e Can beread-only

Introduction to Oracle9i: SQL 11-25



Practice 11 Overview

This practice covers the following topics:
®* Creating a simple view

e Creating a complex view

* Creating a view with a check constraint
* Attempting to modify data in the view

* Displaying view definitions

®* Removing views

‘ 11-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 11 Overview

In this practice, you create smple and complex views and attempt to perform DML statements on the
views.

Introduction to Oracle9i: SQL 11-26




Practice 11

1. Createaview caled EMPLOYEES VU based on the employee numbers, employee names, and
department numbers from the EMPLOYEES table. Change the heading for the employee name to
EMPLOYEE.

2. Display the contents of the EMPLOYEES VU view.

| EMPLOYEE _ID | EMPLOYEE | DEPARTMENT _ID

| 100 | |King | a0
| 101 |Kochhar | a0
| 102 |De Haan | a0
| 103 Hunold | B0
| 104 ||Ernst | B0
| 107 ||Lorentz | B0
| 206 |Gietz | 10

20 rows selected.

3. Select the view name and text from the USER_VI EVS data dictionary view.

Note: Another view already exists. The EMP_DETAI LS_VI EWwas created as part of your
schema.

Note: To see more contents of a LONG column, use the iSQL*Plus command SET LONG n,
where n isthe value of the number of characters of the L ONG column that you want to see.

|  VIEW NAME | TEXT

SELECT employee_id, last_name employee, department_id FROM
employees

EMPLOYEES WU

SELECT e.employee_id, e job_id, e.manager_id, e.department_id,
d.locat ion_id, l.country_id, e first_name, e.last_name, e.salary,
e.cammissio n_pct, d.department_name, j.job_title, | city,
|.state_province, c.cou ntry_name, r.region_name FROM employees e,
departments d, jobs j, loca tions |, countries c, regions r WHERE
e.department_id = d.department_id AN D d.location_id = |.location_id
AMD | country_id = c.country_id AND c.region _id = r.region_id AND
I.job_id = e job_id WITH READ DMLY

EMP_DETAILS _WIEWW

4. Using your EMPLOYEES VU view, enter aquery to display al employee names and department

numbers.
| EMPLOYEE | DEPARTMENT _ID
King | a0
[Knchhar | a0
Gietz | 110

20 rows selected.

Introduction to Oracle9i: SQL 11-27



Practice 11 (continued)

5. Createaview named DEPT50 that contains the employee numbers, employee last names, and

department numbers for all employeesin department 50. Labd the view columns
EMPNO, EMPLOYEE, and DEPTNO. Do not allow an employee to be reassigned to another

department through the view.
6. Display the structure and contents of the DEPT50 view.

| Hame | Hull? | Type

[EMPNO IMOT NULL INUMBER(E)

[EMPLOYEE IMOT NULL WARCHARZ(25)

\DEPTMO | IMUMBER(4)

| EMPNO | EMPLOYEE | DEPTNO

| 124 |hf1|:|urg|:|5 | 50
| 141 |Rajs | &0
| 142 |Davies | &0
| 143 Matos | &0
| 144 Wargas | &0

7. Attempt to reassign Matos to department 80.
If you have time, complete the following exercise:

8. Createaview caled SALARY_ VU based on the employee last names, department names,
salaries, and salary grades for al employees. Use the EMPLOYEES, DEPARTMENTS, and
JOB_CGRADES tables. Label the columns Enpl oyee, Depart nent , Sal ary, and G ade,
respectively.

Introduction to Oracle9i: SQL 11-28



Other Database Objects

Copyright © Oracle Corporation, 2001. All rights reserved.

Schedule: Timing Topic
20 minutes Lecture
20 minutes Practice

40 minutes Totd




Objectives

After completing this lesson, you should be able to
do the following:

* C(Create, maintain, and use sequences
* Create and maintain indexes
®* Create private and public synonyms

12-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn how to create and maintain some of the other commonly used database
objects. These objects include sequences, indexes, and synonyms.

Introduction to Oracle9i: SQL 12-2



Database Objects

Object Description

Table Basic unit of storage; composed of rows
and columns

View Logically represents subsets of data from
one or more tables
Sequence Generates primary key values
Index Improves the performance of some queries
Synonym Alternative name for an object
12-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Objects

Many applications require the use of unique numbers as primary key values. Y ou can either build
code into the application to handle this requirement or use a sequence to generate unique numbers.

If you want to improve the performance of some queries, you should consider creating an index. You
can also use indexes to enforce unigueness on a column or a collection of columns.

Y ou can provide alternative names for objects by using synonyms.

Introduction to Oracle9i: SQL 12-3



What Is a Sequence?

A sequence:

* Automatically generates uniqgue numbers

* |s asharable object

* Is typically used to create a primary key value
®* Replaces application code

®* Speeds up the efficiency of accessing sequence
values when cached in memory

12-4 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a Sequence?
A sequence is a user created database object that can be shared by multiple usersto generate unique
integers.

A typical usage for sequencesisto create a primary key value, which must be unique for each row.
The sequence is generated and incremented (or decremented) by an internal Oracle routine. This can
be atime-saving object because it can reduce the amount of application code needed to write a
sequence-generating routine.

Sequence numbers are stored and generated independently of tables. Therefore, the same sequence
can be used for multiple tables.

Introduction to Oracle9i: SQL 12-4



The CREATE SEQUENCE Statement Syntax

Define a sequence to generate sequential numbers
automatically:

CREATE SEQUENCE sequence

[ 1 NCREMENT BY n]

[ START W TH n]

[ { MAXVALUE n | NOVAXVALUE} ]
[{M NVALUE n | NOM NVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE n |

NOCACHE} ] ;

12-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Sequence

Automatically generate sequential numbers by using the CREATE SEQUENCE statement.

In the syntax:
sequence
| NCREMENT BY n

START WTH n

MAXVALUE n
NOVAXVALUE

M NVALUE n
NOM NVALUE

CYCLE | NOCYCLE

CACHE n | NOCACHE

is the name of the sequence generator

specifiesthe interval between sequence numbers where n isan
integer (If this clause is omitted, the sequence increments by 1.)

specifies the first sequence number to be generated (If this clauseis
omitted, the sequence starts with 1.)

specifies the maximum value the sequence can generate

specifies amaximum value of 10"27 for an ascending sequence and
—1 for adescending sequence (Thisisthe default option.)

specifies the minimum sequence vaue

specifies aminimum value of 1 for an ascending sequence and —
(10726) for a descending sequence (Thisis the default option.)

specifies whether the sequence continues to generate val ues after
reaching its maximum or minimum value (NOCYCLE is the default
option.)

specifies how many values the Oracle server preall ocates and

keep in memory (By default, the Oracle server caches 20 values.)

Introduction to Oracle9i: SQL 12-5



Creating a Sequence

* Create a sequence named DEPT_DEPTI D_SEQto
be used for the primary key of the DEPARTMENTS
table.

®* Do not use the CYCLE option.

CREATE SEQUENCE dept _depti d_seq
| NCREMENT BY 10
START WTH 120
MAXVALUE 9999
NOCACHE
NOCYCLE;
Sequence cr eat ed.

12-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Sequence (continued)

The example on the dide creates a sequence named DEPT_DEPTI D_SEQto be used for the
DEPARTMENT | D column of the DEPARTMENTS table. The sequence starts at 120, does not allow
caching, and does not cycle.

Do not use the CYCLE option if the sequence is used to generate primary key values, unless you have
areliable mechanism that purges old rows faster than the sequence cycles.
For more information, see Oracle9i SQL Reference, “CREATE SEQUENCE.”

Note: The sequenceis not tied to atable. Generally, you should name the sequence after itsintended
use; however the sequence can be used anywhere, regardless of its name.

Instructor Note
If thel NCREMENT BY valueis negative, the sequence descends. Also, ORDER | NOORDER options
are available. The ORDER option guarantees that sequence values are generated in order. It is not

important if you use the sequence to generate primary key values. This option is relevant only with the
Parallel Server option.

If sequence values are cached, they will belogt if thereis asystem failure.

Introduction to Oracle9i: SQL 12-6




Confirming Sequences

* Verify your sequence values in the
USER SEQUENCES data dictionary table.

SELECT sequence_nane, m n_val ue, max_val ue,
i ncrement _by, |ast_nunber

FROM user _sequences;

* The LAST _NUMBER column displays the next
available sequence number if NOCACHE is
specified.

12-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Confirming Sequences

Once you have created your sequence, it is documented in the data dictionary. Since a sequenceisa
database object, you can identify it in the USER_OBJECTS data dictionary table.

Y ou can aso confirm the settings of the sequence by selecting from the USER  SEQUENCES data
dictionary view.

| SEQUENCE_NAME |MIN_VALUE |MAX VALUE |INCREMENT BY | LAST _NUMBER
\DEPARTMENTS_SEQ | 1 9990 | 10| 280
\DEPT_DEPTID_SEQ | 1 9999 | 10| 120
[EMPLOYEES_SEQ | 1| 1.0000E+27 | 1 207
ILOCATIONS_SEQ | 1 9900 | 100 | 3300

Instructor Note
Demo: 12_dd. sql
Purpose: To illustrate the USER_SEQUENCES data dictionary view and its contents.

Introduction to Oracle9i: SQL 12-7



NEXTVAL and CURRVAL Pseudocolumns

* NEXTVAL returns the next available sequence
value. It returns a unique value every time it is
referenced, even for different users.

®* CURRVAL obtains the current sequence value.

* NEXTVAL must be issued for that sequence before
CURRVAL contains a value.

12-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Sequence

After you create your sequence, it generates sequential numbers for use in your tables. Reference the
sequence values by using the NEXTVAL and CURRVAL pseudocolumns.

NEXTVAL and CURRVAL Pseudocolumns

The NEXTVAL pseudocolumn is used to extract successive sequence numbers from a specified
sequence. Y ou must qualify NEXTVAL with the sequence name. When you reference
sequence. NEXTVAL, anew sequence number is generated and the current sequence number is
placed in CURRVAL.

The CURRVAL pseudocolumn is used to refer to a sequence number that the current user has just
generated. NEXTVAL must be used to generate a sequence number in the current user’s session before
CURRVAL can be referenced. Y ou must qualify CURRVAL with the sequence name. When
sequence. CURRVAL isreferenced, the last value returned to that user’s processis displayed.

Introduction to Oracle9i: SQL 12-8




Rules for Using NEXTVAL and CURRVAL
Y ou can use NEXTVAL and CURRVAL in the following contexts:

The SELECT list of a SELECT statement that is not part of a subquery
The SELECT list of asubquery inan | NSERT statement

The VALUES clause of an | NSERT statement

The SET clause of an UPDATE statement

Y ou cannot use NEXTVAL and CURRVAL in the following contexts:

The SELECT list of aview

A SELECT statement with the DI STI NCT keyword

A SELECT statement with GROUP BY, HAVI NG, or ORDER BY clauses

A subquery in a SELECT, DELETE, or UPDATE statement

The DEFAULT expression ina CREATE TABLE or ALTER TABLE statement

For more information, see Oracle9i SQL Reference, “Pseudocolumns’ section and “CREATE
SEQUENCE.”

Instructor Note

Be sure to point out the ruleslisted on this page.

Introduction to Oracle9i: SQL 12-9



Using a Sequence

* Insert a new department named “Support” in
location ID 2500.

I NSERT | NTO depart nent s(depart nent i d,
depart ment _nane, | ocation_id)
VALUES (dept _depti d_seq. NEXTVAL,
" Support’, 2500);
1 row created.

* View the current value for the DEPT_DEPTI D_SEQ
sequence.

SELECT dept depti d_seq. CURRVAL
FROM dual ;

12-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Sequence

The example on the dide inserts a new department in the DEPARTVENTS table. It usesthe
DEPT_DEPTI D_SEQsequence for generating a new department number as follows:

Y ou can view the current value of the sequence:

SELECT dept _depti d_seq. CURRVAL
FROM  dual ;

| CURRVAL
| 120

Suppose now you want to hire employees to staff the new department. The | NSERT statement to be
executed for al new employees can include the following code:

I NSERT | NTO enpl oyees (enpl oyee_id, departnment_id, ...)

VALUES (enpl oyees_seq. NEXTVAL, dept _deptid seq . CURRVAL, ...);
Note: The preceding example assumes that a sequence called EMPLOYEE_SEQhas already been
created for generating new employee numbers.

Introduction to Oracle9i: SQL 12-10



Using a Sequence

®* (Caching sequence values in memory gives faster
access to those values.

®* (Gaps in sequence values can occur when:
— Avrollback occurs
— The system crashes
— A sequenceis used in another table

* |If the sequence was created with NOCACHE, view

the next available value, by querying the
USER SEQUENCES table.

12-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Caching Sequence Values

Cache sequences in memory to provide faster access to those sequence values. The cache is populated
the first time you refer to the sequence. Each request for the next sequence valueis retrieved from the
cached sequence. After the last sequence valueis used, the next request for the sequence pulls another
cache of sequencesinto memory.

Gapsin the Sequence

Although sequence generators issue sequential numbers without gaps, this action occurs independent of a
commit or rollback. Therefore, if you roll back a statement containing a sequence, the number islost.

Another event that can cause gaps in the sequence is a system crash. If the sequence caches valuesin the
memory, then those values are lost if the system crashes.

Because sequences are not tied directly to tables, the same sequence can be used for multiple tables. If
you do so, each table can contain gaps in the sequential numbers.

Viewing the Next Available Sequence Value without I ncrementing It
If the sequence was created with NOCACHE, it is possible to view the next avail able sequence value
without incrementing it by querying the USER _SEQUENCES table.

Instructor Note

Frequently used sequences should be created with caching to improve efficiency. For cached sequences,
thereis no way to find out what the next available sequence value will be without actually obtaining, and
using up, that value. It isrecommended that users resist finding the next sequence value. Trust the system
to provide a unique value each time a sequenceisused in an | NSERT statement.

Introduction to Oracle9i: SQL 12-11




Modifying a Sequence

Change the increment value, maximum value,
minimum value, cycle option, or cache option.

ALTER SEQUENCE dept deptid_seq
| NCREMENT BY 20
MAXVALUE 999999
NOCACHE
NOCYCLE;
Sequence al tered.

12-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Altering a Sequence

If you reach the MAXVAL UE limit for your sequence, no additional values from the sequence are
alocated and you will receive an error indicating that the sequence exceeds the MAXVALUE. To
continue to use the sequence, you can modify it by using the ALTER SEQUENCE statement.

Syntax

ALTER SEQUENCE sequence
[  NCREMENT BY n]
[ { MAXVALUE n | NOVAXVALUE} ]
[{M NVALUE n | NOM NVALUE} ]
[{CYCLE | NOCYCLE}]
[{CACHE n | NOCACHE}];

In the syntax:
sequence isthe name of the sequence generator
For more information, see Oracle9i SQL Reference, “ALTER SEQUENCE.”

Introduction to Oracle9i: SQL 12-12




Guidelines for Modifying
a Sequence

® You must be the owner or have the ALTER
privilege for the sequence.

®* Only future sequence numbers are affected.

* The sequence must be dropped and
re-created to restart the sequence at a different
number.

®* Some validation is performed.

12-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Modifying Sequences
e You must bethe owner or have the ALTER privilege for the sequence in order to modify it.
e Only future sequence numbers are affected by the ALTER SEQUENCE statement.

e The START W TH option cannot be changed using ALTER SEQUENCE. The sequence must
be dropped and re-created in order to restart the sequence at a different number.

e Somevalidation is performed. For example, a new MAXVALUE that is |ess than the current
sequence number cannot be imposed.

ALTER SEQUENCE dept _depti d_seq
| NCREMENT BY 20
MAXVALUE 90
NOCACHE
NOCYCLE;

ALTER SEQUENCE dept _depti d_seq

*

ERROR at line 1:
ORA- 04009: MAXVALUE cannot be nmade to be | ess than the current
val ue

Introduction to Oracle9i: SQL 12-13




Removing a Sequence

* Remove a sequence from the data dictionary by
using the DROP SEQUENCE statement.

* Onceremoved, the sequence can no longer be
referenced.

DROP SEQUENCE dept _depti d_seq;
Sequence dropped.

12-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing a Sequence
To remove a sequence from the data dictionary, use the DROP SEQUENCE statement. Y ou must be the
owner of the sequence or have the DROP ANY SEQUENCE privilege to removeit.
Syntax
DROP SEQUENCE sequence;

In the syntax:
sequence isthe name of the sequence generator
For more information, see Oracle9i SQL Reference, “DROP SEQUENCE.”

Introduction to Oracle9i: SQL 12-14



What is an Index?

An index:
®* |s aschemaobject

®* |s used by the Oracle server to speed up the
retrieval of rows by using a pointer

® Can reduce disk I/O by using arapid path access
method to locate data quickly

* Isindependent of the table it indexes

* |s used and maintained automatically by the
Oracle server

12-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Indexes

An Oracle server index is a schema object that can speed up the retrieval of rows by using a pointer.
Indexes can be created explicitly or automatically. If you do not have an index on the column, then a
full table scan occurs.

Anindex provides direct and fast accessto rowsin atable. Its purpose isto reduce the necessity of
disk 1/0 by using an indexed path to locate data quickly. The index is used and maintained
automatically by the Oracle server. Once an index is created, no direct activity isrequired by the user.

Indexes are logically and physically independent of the table they index. This means that they can be
created or dropped at any time and have no effect on the base tables or other indexes.
Note: When you drop atable, corresponding indexes are a so dropped.

For more information, see Oracle9i Concepts, “ Schema Objects’ section, “Indexes’ topic.

Instructor Note

The decision to create indexesis a global, high-level decision. Creation and maintenance of indexesis
often atask for the database administrator.

Reference the column that has an index in the predicate WHERE clause without modifying the indexed
column with a function or expression.

A ROW Disahexadecimal string representation of the row address containing block identifier, row
location in the block, and the database file identifier. The fastest way to access any particular row is
by referencing its ROW D.

Introduction to Oracle9i: SQL 12-15




How Are Indexes Created?

* Automatically: A unique index is created
automatically when you define a PRI MARY KEY or
UNI QUE constraint in a table definition.

* Manually: Users can create nonunique indexes on
columns to speed up access to the rows.

‘ 12-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Indexes

Two types of indexes can be created. One typeis a unique index: the Oracle server automatically
creates thisindex when you define a column in atable to have a PRI MARY KEY or a UNI QUE key
congtraint. The name of the index is the name given to the constraint.

The other type of index is a nonunique index, which a user can create. For example, you can create a
FOREI GN KEY column index for ajoin in aquery to improve retrieval speed.

Note: Y ou can manually create a unique index, but it is recommended that you create a unique
constraint, which implicitly creates a unique index.

Introduction to Oracle9i: SQL 12-16




Creating an Index

® (Create an index on one or more columns.

CREATE | NDEX i ndex
ON table (colum[, colum]...);

* Improve the speed of query access to the
LAST NAME column in the EMPLOYEES table.

CREATE | NDEX enp_| ast_nane_i dx
ON enpl oyees(| ast _nane) ;
| ndex creat ed.

‘ 12-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an Index
Create an index on one or more columns by issuing the CREATE | NDEX statement.

In the syntax:
i ndex is the name of the index
tabl e is the name of the table
col um is the name of the column in the table to be indexed

For more information, see Oracle9i SQL Reference, “CREATE | NDEX.”

Instructor Note

To create an index in your schema, you must have the CREATE TABLE privilege. To create an index
in any schema, you need the CREATE ANY | NDEX privilege or the CREATE TABLE privilege on
the table on which you are creating the index.

Another option in the syntax isthe UNI QUE keyword. Emphasize that you should not explicitly define
unique indexes on tables. Instead define uniqueness in the table as a constraint. The Oracle server
enforces unigue integrity constraints by automatically defining a unique index on the unique key.

Introduction to Oracle9i: SQL 12-17




When to Create an Index

You should create an index if:
® A column contains a wide range of values
® A column contains a large number of null values

®* One or more columns are frequently used together
in a WHERE clause or a join condition

* Thetableis large and most queries are expected
to retrieve less than 2 to 4 percent of the rows

12-18 Copyright © Oracle Corporation, 2001. All rights reserved.

More Is Not Always Better

More indexes on atable does not mean faster queries. Each DML operation that is committed on a
table with indexes means that the indexes must be updated. The more indexes you have associated
with atable, the more effort the Oracle server must make to update all the indexes after a DML
operation.

When to Create an Index
Therefore, you should create indexes only if:

e The column contains awide range of values

e The column contains alarge number of null values

*  One or more columns are frequently used together in a WHERE clause or join condition
e Thetableislarge and most queries are expected to retrieve less than 2—4% of the rows

Remember that if you want to enforce uniqueness, you should define a unique constraint in the table
definition. Then aunique index is created automatically.

Instructor Note

A compositeindex (also called a concatenated index) is an index that you create on multiple columns
in atable. Columnsin a composite index can appear in any order and need not be adjacent in the table.

Composite indexes can speed retrieval of datafor SELECT statementsin which the WHERE clause
references al or the leading portion of the columns in the composite index.
Introduction to Oracle9i: SQL 12-18




When Not to Create an Index

It is usually not worth creating an index if:
®* The table is small

* The columns are not often used as a condition in
the query

®* Most queries are expected to retrieve more than 2
to 4 percent of the rows in the table

* The table is updated frequently

* Theindexed columns are referenced as part of an
expression

12-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Instructor Note

Null values are not included in the index.

To optimize joins, you can create an index on the FOREI GN KEY column, which speeds up the
search to match rows to the PRI MARY KEY column.

The optimizer does not use an index if the WHERE clause containsthel S NULL expression.

Introduction to Oracle9i: SQL 12-19



Confirming Indexes

* The USER | NDEXES data dictionary view contains
the name of the index and its uniqueness.

* The USER | ND COLUWNS view contains the index
name, the table name, and the column name.

SELECT ic.index_name, ic.colum_nane,
i c.colum_position col _pos,iXx.uni gueness

FROM user i ndexes ix, user_ind colums ic
WHERE i c.index_nane = iXx.index_nane
AND i c.tabl e_nane = ' EMPLOYEES ;

12-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Confirming Indexes

Confirm the existence of indexes from the USER | NDEXES data dictionary view. Y ou can also check
the columns involved in an index by querying the USER_| ND_COLUWNS view.

The example on the dide displays all the previoudly created indexes, with the names of the affected
column, and the index’ s uniqueness, on the EMPLOYEES table.

| INDEX_NAME | COLUMN NAME | COL_POS | UNIQUENES
[EMP_EMAIL_UK [EMAIL | 1 [UNIQUE
[EMP_EMP_ID_PK [EMPLOYEE_ID | 1 |UNIQUE
[EMP_DEPARTMENT [X \DEPARTMENT_ID | 1 [NOMUNIQUE
[EMP_IOB_IX JOB_ID | 1 [NOMUNIQUE
[EMP_MANAGER_IX IMANAGER_ID | 1 [NOMUNIQUE
[EMP_MAME [ ILAST_MNAME | 1 [NOMUNIQUE
[EMP_MAME I FIRST_MAME | 2 [MONUNIGUE
[EMP_LAST_NAME_IDiX ILAST_MNAME | 1 [NOMUNIQUE

B rows selected.

Introduction to Oracle9i: SQL 12-20




Function-Based Indexes

e A function-based index is an index based on
expressions.

* The index expression is built from table columns,
constants, SQL functions, and user-defined
functions.

CREATE | NDEX upper _dept _nane_i dx
ON depart nment s( UPPER( depart ment _nane)) ;

| ndex creat ed.

SELECT *
FROM departnents
VWHERE UPPER(departnent _name) = ' SALES ;

12-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Function-Based Index

Function-based indexes defined with the UPPER( col unm_nane) or LONER( col unm_nane)
keywords alow case-insensitive searches. For example, the following index:

CREATE | NDEX upper | ast_name_i dx ON enpl oyees (UPPER(| ast _nane));
Facilitates processing queries such as:
SELECT * FROM enpl oyees WHERE UPPER(| ast _nanme) = ' KING ;

To ensure that the Oracle server uses the index rather than performing afull table scan, be sure that
the value of the function is not null in subsequent queries. For example, the following statement is
guaranteed to use the index, but without the WHERE clause the Oracle server may perform afull table
scan:

SELECT  *

FROM enpl oyees

VWHERE UPPER (Il ast_name) 1S NOT NULL

ORDER BY UPPER (1 ast _nane);

Introduction to Oracle9i: SQL 12-21




Function-Based Index (continued)

The Oracle server treats indexes with columns marked DESC as function-based indexes. The columns
marked DESC are sorted in descending order.

Instructor Note

L et students know that to create a function-based index in your own schema on your own table, you
must have the CREATE | NDEX and QUERY REWRI TE system privileges. To create theindex in
another schema or on another schema’s table, you must have the CREATE ANY | NDEX and
GLOBAL QUERY REWRI TE privileges. The table owner must also have the EXECUTE object
privilege on the functions used in the function-based index.

Introduction to Oracle9i: SQL 12-22



Removing an Index

* Remove an index from the data dictionary by
using the DROP | NDEX command.

| DROP | NDEX i ndex; I

* Remove the UPPER LAST NAME | DX index from
the data dictionary.

DROP | NDEX upper _| ast _nane_i dx;
I ndex dropped.

®* To drop an index, you must be the owner of the
index or have the DROP ANY | NDEX privilege.

12-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing an Index

Y ou cannot modify indexes. To change an index, you must drop it and then re-create it. Remove an
index definition from the data dictionary by issuing the DROP | NDEX statement. To drop an index,
you must be the owner of the index or have the DROP ANY | NDEX privilege.

In the syntax:

i ndex is the name of the index

Note: If you drop atable, indexes and constraints are automatically dropped, but views and
sequences remain.

Introduction to Oracle9i: SQL 12-23




Synonyms

Simplify access to objects by creating a synonym
(another name for an object). With synonyms, you can:

®* Easereferring to atable owned by another user
e Shorten lengthy object names

CREATE [ PUBLI C] SYNONYM synonym
FOR obj ect;

12-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Synonym for an Object

To refer to atable owned by another user, you need to prefix the table name with the name of the user
who created it followed by a period. Creating a synonym eliminates the need to qualify the object
name with the schema and provides you with an alternative name for atable, view, sequence,

procedure, or other objects. This method can be especially useful with lengthy object names, such as
views.

In the syntax:

PUBLI C creates a synonym accessible to all users

synonym is the name of the synonym to be created

obj ect identifies the object for which the synonymis created
Guidelines

e Theobject cannot be contained in a package.

* A private synonym name must be distinct from all other objects owned by the same user.
For more information, see Oracle9i SQL Reference, “CREATE SYNONYM”

Introduction to Oracle9i: SQL 12-24




Creating and Removing Synonyms

®* (Create a shortened name for the
DEPT_SUM VU view.

CREATE SYNONYM d_sum
FOR dept_sumvu;

Synonym Cr eat ed.

® Drop asynonym.

DROP SYNONYM d_sum
Synonym dr opped.

12-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Synonym for an Object (continued)
The dide exampl e creates a synonym for the DEPT _SUM VU view for quicker reference.

The database administrator can create a public synonym accessibleto al users. The following example
creates a public synonym named DEPT for Alice’s DEPARTMVENTS table:

CREATE PUBLI C SYNONYM dept
FOR al i ce. departnents;
Synonym cr eat ed.

Removing a Synonym

To drop asynonym, use the DROP SYNONYMstatement. Only the database administrator can drop a
public synonym.

DROP PUBLI C SYNONYM dept ;
Synonym dr opped.

For more information, see Oracle9i SQL Reference, “DROP  SYNONYM”

Instructor Note

In the Oracle server, the DBA can specificaly grant the CREATE PUBLI C SYNONYMprivilege to any
user, and that user can create public synonyms.

Introduction to Oracle9i: SQL 12-25



Summary

In this lesson, you should have learned how to:

e Automatically generate sequence numbers by
using a sequence generator

* View sequence information in the
USER SEQUENCES data dictionary table

* Create indexes to improve query retrieval speed

* View index information in the USER | NDEXES
dictionary table

* Use synonyms to provide alternative names for
objects

12-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In thislesson you should have learned about some of the other database objects including sequences,
indexes, and views.

Sequences

The sequence generator can be used to automatically generate sequence numbers for rowsin tables.
This can save time and can reduce the amount of application code needed.

A sequence is a database object that can be shared with other users. Information about the sequence
can be found in the USER_SEQUENCES table of the data dictionary.

To use a sequence, reference it with either the NEXTVAL or the CURRVAL pseudocolumns.
» Retrieve the next number in the sequence by referencing sequence. NEXTVAL.
* Return the current available number by referencing sequence. CURRVAL.
Indexes

Indexes are used to improve query retrieval speed. Users can view the definitions of the indexesin the
USER | NDEXES data dictionary view. An index can be dropped by the creator, or a user with the
DROP ANY | NDEX privilege, by using the DROP | NDEX statement.

Synonyms

Database administrators can create public synonyms and users can create private synonyms for
convenience, by using the CREATE SYNONYMstatement. Synonyms permit short names or alternative
names for objects. Remove synonyms by using the DROP SYNONYMstatement.

Introduction to Oracle9i: SQL 12-26



Practice 12 Overview

This practice covers the following topics:
* Creating sequences

* Using sequences

®* Creating nonunique indexes

* Displaying data dictionary information about
sequences and indexes

®* Dropping indexes

‘ 12-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 12 Overview

In this practice, you create a sequence to be used when populating your table. Y ou also create
implicit and explicit indexes.

Introduction to Oracle9i: SQL 12-27




Practice 12

1.

2.

Create a sequence to be used with the primary key column of the DEPT table. The

sequence should start at 200 and have a maximum value of 1000. Have your sequence increment
by ten numbers. Name the sequence DEPT | D_SEQ

Write aquery in ascript to display the following information about your sequences. sequence
name, maximum value, increment size, and last number. Name the script | ab12_2. sql . Runthe

statement in your script.

|  SEQUENCE_NAME | MAX VALUE | INCREMENT BY | LAST NUMBER

IDEPARTMENTS_SEC | 9990 | 10 | 280
\DEPT_ID_SEGQ | 1000 | 10| 200
[EMPLOYEES_SEQ | 1.0000E+27 | 1 207
ILOCATIONS_SEQ | 9900 | 100 | 3300

Write a script to insert two rows into the DEPT table. Name your script | ab12 3. sql . Be sure
to use the sequence that you created for the ID column. Add two departments named Education and
Administration. Confirm your additions. Run the commands in your script.
Create a nonunique index on the foreign key column (DEPT_I D) in the EMP table.
Display the indexes and uniqueness that exist in the data dictionary for the EMP table.
Save the statement into ascript named | ab12_5. sql .
| INDEX_NAME | TABLE_NAME | UNIQUENES
[EMP_DEPT_ID_ID [EMP IMOMUNIQUE
IMY_EMP_ID_PK [EMP IUNIQUE

Introduction to Oracle9i: SQL 12-28



Controlling User Access

Copyright © Oracle Corporation, 2001. All rights reserved.

Schedule: Timing Topic
20 minutes Lecture
20 minutes Practice

40 minutes Totd




Objectives

After completing this lesson, you should be able to
do the following:

* (Create users

®* Create roles to ease setup and maintenance of the
security model

®* Use the GRANT and REVOKE statements to grant
and revoke object privileges

* C(Create and access database links

13-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn how to control database access to specific objects and add new users with
different levels of access privileges.

Introduction to Oracle9i: SQL 13-2



Controlling User Access

)
N7
Database T

administrator
\/

Username and password
Privileges

13-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling User Access
In a multiple-user environment, you want to maintain security of the database access and use. With
Oracle server database security, you can do the following:
» Control database access
» Give accessto specific objectsin the database
»  Confirm given and received privileges with the Oracle data dictionary
*  Create synonyms for database objects

Database security can be classified into two categories: system security and data security. System
security covers access and use of the database at the system level, such as the username and password,
the disk space allocated to users, and the system operations that users can perform. Database security
covers access and use of the database objects and the actions that those users can have on the objects.

Introduction to Oracle9i: SQL 13-3



Privileges

e Database security:
— System security
— Data security
* System privileges: Gaining access to the database

* Object privileges: Manipulating the content of the
database objects

e Schemas: Collections of objects, such as tables,
views, and sequences

13-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Privileges
Privileges are the right to execute particular SQL statements. The database administrator (DBA) isa
high-level user with the ability to grant users access to the database and its objects. The users require
system privileges to gain access to the database and object privileges to manipul ate the content of the
objectsin the database. Users can also be given the privilege to grant additional privilegesto other
users or to roles, which are named groups of related privileges.

Schemas

A schemaisa collection of abjects, such astables, views, and sequences. The schemais owned by a
database user and has the same name as that user.

For more information, see Oracle9i Application Developer’s Guide - Fundamentals, “ Establishing a
Security Policy” section, and Oracle9i Concepts, “Database Security” topic.

Introduction to Oracle9i: SQL 13-4



System Privileges

®* More than 100 privileges are available.

* The database administrator has high-level system
privileges for tasks such as:

— Creating new users
— Removing users

— Removing tables

— Backing up tables

13-5 Copyright © Oracle Corporation, 2001. All rights reserved.

System Privileges

More than 100 distinct system privileges are available for users and roles. System privileges typically
are provided by the database administrator.

Typical DBA Privileges

System Privilege Operations Authorized

CREATE USER Grantee can create other Oracle users (a privilege required
for aDBA role).

DROP USER Grantee can drop another user.

DROP ANY TABLE Grantee can drop a tablein any schema.

BACKUP ANY TABLE Grantee can back up any table in any schema with the
export utility.

SELECT ANY TABLE Grantee can query tables, views, or snapshotsin any
schema.

CREATE ANY TABLE Grantee can create tables in any schema.

Introduction to Oracle9i: SQL 13-5




Creating Users

The DBA creates users by using the CREATE USER
statement.

CREATE USER user
| DENTI FI ED BY  password,;

CREATE USER scott
| DENTI FI ED BY tiger;
User creat ed.

13-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a User

The DBA creates the user by executing the CREATE USER statement. The user does not have any

privileges at this point. The DBA can then grant privileges to that user. These privileges determine
what the user can do at the database level.

The dide gives the abridged syntax for creating a user.

In the syntax:
user is the name of the user to be created
passwor d specifies that the user must log in with this password

For more information, see Oracle9i QL Reference, “GRANT” and “ CREATE USER”

Instructor Note
For information on DROP USER, refer to Oracle9i SQL Reference, “DROP USER. ”

Introduction to Oracle9i: SQL 13-6



User System Privileges

®* Once auser is created, the DBA can grant specific
system privileges to a user.

GRANT privilege [, privilege...]
TO user [, user| role, PUBLIC ..];

* An application developer, for example, may have
the following system privileges:

— CREATE SESSI ON

— CREATE TABLE

— CREATE SEQUENCE
— CREATE VI EW

— CREATE PROCEDURE

13-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Typical User Privileges
Now that the DBA has created a user, the DBA can assign privilegesto that user.

System Privilege Operations Authorized
CREATE SESSI ON Connect to the database
CREATE TABLE Create tables in the user’s schema
CREATE SEQUENCE Create a sequence in the user’s schema
CREATE VI EW Create aview in the user’s schema
CREATE PROCEDURE Create a stored procedure, function, or packagein the user’s
schema
In the syntax:
privil ege isthe system privilege to be granted

user | rol e|] PUBLI C is the name of the user, the name of therole, or PUBLI C
designates that every user is granted the privilege

Note: Current system privileges can be found in the dictionary view SESSI ON_PRI VS.

Instructor Note
The syntax displayed for the GRANT command is not the full syntax for the statement.

Introduction to Oracle9i: SQL 13-7



Granting System Privileges

The DBA can grant a user specific system privileges.

GRANT create session, create table,
create sequence, create view

TO scott;
Grant succeeded.

13-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Granting System Privileges

The DBA usesthe GRANT statement to allocate system privileges to the user. Once the user has been
granted the privileges, the user can immediately use those privileges.

In the example on the dlide, user Scott has been assigned the privilegesto create sessions, tables,
sequences, and views.

Instructor Note

A user needsto have the required space quota to create tables.
Introduction to Oracle9i: SQL 13-8



What is a Role?
2 « Q ) Q Q
\\ Ilu \k Ilu \\ /Ilu \\ /Ilu \\ Ilu \\ llll
Users
Manager
Privileges
Allocating privileges Allocating privileges
without a role with arole
13-9 Copyright © Oracle Corporation, 2001. All rights reserved.

What is a Role?

A roleisanamed group of related privileges that can be granted to the user. This method makesiit
easier to revoke and maintain privileges.

A user can have access to severd roles, and several users can be assigned the samerole. Roles are
typically created for a database application.

Creating and Assigning a Role

First, the DBA must create the role. Then the DBA can assign privileges to the role and usersto the
role.

Syntax
CREATE ROLE rol e;
In the syntax:
role isthe name of the role to be created

Now that the roleis created, the DBA can use the GRANT statement to assign usersto therole aswell as
assign privilegesto therole.

Instructor Note

Discuss the following four points about roles:
* Arenamed groups of related privileges
e Can begranted to users
«  Simplify the process of granting and revoking privileges
e Arecreated by aDBA
Introduction to Oracle9i: SQL 13-9



Creating and Granting Privileges to a Role

* Create arole

CREATE ROLE manager;
Rol e created.

* Grant privileges to arole
GRANT create table, create view

TO manager ;
Grant succeeded.

* Grant aroleto users

GRANT manager TO DEHAAN, KCCHHAR;
Grant succeeded.
‘ 13-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Role
The example on the dlide creates a manager role and then allows managers to create tables and views.
It then grants DeHaan and Kochhar the role of managers. Now DeHaan and K ochhar can create tables
and views.
If users have multiple roles granted to them, they receive al of the privileges associated with al of the
roles.

Introduction to Oracle9i: SQL 13-10



Changing Your Password

* The DBA creates your user account and initializes
your password.

®* You can change your password by using the
ALTER USER statement.

ALTER USER scott
| DENTI FI ED BY I on;
User altered.

13-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing Your Password

The DBA creates an account and initializes a password for every user. Y ou can change your password
by usingthe ALTER USER statement.

Syntax
ALTER USER user | DENTI FI ED BY password;
In the syntax:
user isthe name of the user
password specifies the new password

Although this statement can be used to change your password, there are many other options. Y ou must
have the ALTER USER privilege to change any other option.

For more information, see Oracle9i SQL Reference, “ALTER USER.”

Introduction to Oracle9i: SQL 13-11



Object Privileges
Object
Privilege Table | View |[Sequence | Procedure
ALTER v v
DELETE v v
EXECUTE v
| NDEX v
| NSERT v v
REFERENCES v v
SELECT v v v
UPDATE v v

13-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Object Privileges

An object privilegeisaprivilege or right to perform a particul ar action on a specific table, view,
sequence, or procedure. Each object has a particular set of grantable privileges. The table on the dide
lists the privileges for various objects. Note that the only privileges that apply to a sequence are
SELECT and ALTER. UPDATE, REFERENCES, and | NSERT can be restricted by specifying a subset
of updateable columns. A SELECT privilege can be restricted by creating a view with a subset of
columns and granting the SELECT privilege only on the view. A privilege granted on asynonym s
converted to a privilege on the base table referenced by the synonym.

Instructor Note

You can usethe ALTER VI EWand ALTER PROCEDURE commands to recompile views and
PL/SQL procedures, functions, and packages.

Introduction to Oracle9i: SQL 13-12




Object Privileges

* Object privileges vary from object to object.
* An owner has all the privileges on the object.

* An owner can give specific privileges on that
owner’s object.

GRANT obj ect _priv [(colums)]
ON obj ect
TO {user|rol e| PUBLI C}

[ W TH GRANT OPTI O\ ;

‘ 13-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Granting Object Privileges

Different object privileges are available for different types of schema objects. A user automatically
has all object privileges for schema objects contained in the user’ s schema. A user can grant any
object privilege on any schema object that the user owns to any other user or role. If the grant includes
W TH GRANT OPTI QN, then the grantee can further grant the object privilege to other users;
otherwise, the grantee can use the privilege but cannot grant it to other users.

In the syntax:

obj ect _priv is an object privilege to be granted

ALL specifies al object privileges

col ums specifies the column from a table or view on which privileges
are granted

ON obj ect isthe object on which the privileges are granted

TO identifiesto whom the privilege is granted

PUBLI C grants object privilegesto all users

W TH GRANT OPTI ON alows the grantee to grant the object privilegesto other users
and roles

Introduction to Oracle9i: SQL 13-13



Granting Object Privileges

®* Grant query privileges on the EMPLOYEES table.

GRANT sel ect

ON enpl oyees
TO sue, rich;
Grant succeeded.

® Grant privileges to update specific columns to
users and roles.

GRANT update (departnent_nane, |ocation_id)
ON departnents

TO scott, manager,

Grant succeeded.

‘ 13-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines

» To grant privileges on an object, the object must be in your own schema, or you must have been
granted the object privilegesW TH GRANT OPTI ON.

* An object owner can grant any object privilege on the object to any other user or role of the database.
» Theowner of an object automatically acquires al object privileges on that object.

The first example on the dlide grants users Sue and Rich the privilege to query your EMPLOYEES table. The
second example grants UPDATE privileges on specific columns in the DEPARTMENTS table to Scott and to
the manager role.

If Sue or Rich now want to SELECT data from the employees table, the syntax they must useis:
SELECT *

FROM scott. enpl oyees;

Alternatively, they can create a synonym for the table and SELECT from the synonym:
CREATE SYNONYM enp FOR scott. enpl oyees;
SELECT * FROM enp;

Note: DBAs generdly allocate system privileges; any user who owns an object can grant object privileges.

Instructor Note
Please read the Instructor Note at the end of this lesson.

Introduction to Oracle9i: SQL 13-14



Using the W TH GRANT OPTI ONand PUBLI C
Keywords

* Give a user authority to pass along privileges.

GRANT sel ect, insert
ON departnments
TO scott

WTH GRANT OPTI ON;
Grant succeeded.

* Allow all users on the system to query data from
Alice’s DEPARTMENTS table.

GRANT  sel ect

ON al i ce. departnents
TO PUBLI C;

Grant succeeded.

‘ 13-15 Copyright © Oracle Corporation, 2001. All rights reserved.

The W TH GRANT OPTI ON Keyword

A privilegethat is granted with the W TH GRANT OPTI ON clause can be passed on to other users
and roles by the grantee. Object privileges granted with the W TH GRANT OPTI ONclause are
revoked when the grantor’ s privilege is revoked.

The example on the dlide gives user Scott access to your DEPARTMENTS table with the privilegesto
query the table and add rows to the table. The example also alows Scott to give others these
privileges.

The PUBLI CKeyword
An owner of atable can grant accessto all users by using the PUBLI C keyword.

The second example alows all users on the system to query datafrom Alice’'s DEPARTMENTS table.

Instructor Note

If a statement does not use the full name of an object, the Oracle server implicitly prefixes the object
name with the current user’ s name (or schema). If user Scott queries the DEPARTMVENTS table, for
example, the system selects from the SCOTT. DEPARTMENTS table.

If astatement does not use the full name of an object, and the current user does not own an object of
that name, the system prefixes the object name with PUBLI C. For example, if user Scott queriesthe
USER_OBJECTS table, and Scott does not own such atable, the system selects from the data
dictionary view by way of the PUBLI C. USER OBJECTS public synonym.

Introduction to Oracle9i: SQL 13-15



Confirming Privileges Granted

Data Dictionary View Description

ROLE_SYS PRI VS System privileges granted to roles
ROLE_TAB PRI VS Table privileges granted to roles
USER_ROLE PRI VS Roles accessible by the user
USER_TAB_PRI VS_MADE Object privileges granted on the

user’s objects

USER_TAB_PRI VS_RECD Object privileges granted to the
user

USER COL_PRI VS _MADE Object privileges granted on the
columns of the user’s objects

USER COL_PRI VS _RECD Object privileges granted to the
user on specific columns

USER SYS PRI VS Lists system privileges granted to
the user

‘ 13-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Confirming Granted Privileges

If you attempt to perform an unauthorized operation, such as deleting a row from atable for which
you do not have the DELETE privilege, the Oracle server does not permit the operation to take place.

If you receive the Oracle server error message “table or view does not exist,” you have done either of
the following:

+« Named atable or view that does not exist

« Attempted to perform an operation on atable or view for which you do not have the appropriate
privilege
Y ou can access the data dictionary to view the privileges that you have. The chart on the dide
describes various data dictionary views.

Introduction to Oracle9i: SQL 13-16



How to Revoke Object Privileges

®* You use the REVOKE statement to revoke privileges
granted to other users.

* Privileges granted to others through the W TH
GRANT OPTI ONclause are also revoked.

REVOKE {privilege [, privilege...]|ALL}
ON obj ect

FROM  {user[, user...]]|rol el PUBLI C

[ CASCADE CONSTRAI NTS] ;

13-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Revoking Object Privileges

Y ou can remove privileges granted to other users by using the REVOKE statement. When you use the
REVCOKE statement, the privileges that you specify are revoked from the users you name and from any
other users to whom those privileges were granted through the W TH GRANT OPTI ON clause.

In the syntax:

CASCADE is required to remove any referential integrity constraints made to the
CONSTRAI NTS object by means of the REFERENCES privilege

For more information, see Oracle9i SQL Reference, “REVCKE.”

Introduction to Oracle9i: SQL 13-17




Revoking Object Privileges

As user Alice, revoke the SELECT and | NSERT
privileges given to user Scott on the DEPARTMENTS

table.

REVOKE sel ect, insert
ON departnents
FROM scott;

Revoke succeeded.

‘ 13-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Revoking Object Privileges (continued)
The example on the dlide revokes SELECT and | NSERT privileges given to user Scott on the
DEPARTMENTS table.
Note: If auser isgranted a privilege withthe W TH GRANT OPTI ON clause, that user can aso grant
the privilege with the W TH GRANT OPTI ON clause, so that along chain of granteesis possible, but
no circular grants are permitted. If the owner revokes a privilege from a user who granted the privilege
to other users, the revoking cascadesto all privileges granted.
For example, if user A grants SELECT privilege on atable to user B including the W TH GRANT
OPTI ON clause, user B can grant to user Cthe SELECT privilege withthe W TH GRANT OPTI ON
clause aswdll, and user C can then grant to user Dthe SELECT privilege. If user A revokes privilege
from user B, then the privileges granted to users C and D are a so revoked.

Instructor Note

Revoking system privileges is not within the scope of this lesson. For information on this topic refer
to: Oracle9i SQL Reference, “REVOKE syst em pri vil eges_and_rol es.”

Introduction to Oracle9i: SQL 13-18



Database Links

A database link connection allows local users to
access data on aremote database.

. Local Remote
N
B BT —
N B EVve Table
\/
SELECT * FROM HQ ACME. COM
emp@iQ_ACME. COM database

‘ 13-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Links

A database link is a pointer that defines a one-way communication path from an Oracle database
server to another database server. The link pointer is actually defined as an entry in a data dictionary
table. To accessthe link, you must be connected to the local database that contains the data dictionary
entry.

A database link connection is one-way in the sense that a client connected to local database A can use
alink stored in database A to access information in remote database B, but users connected to
database B cannot use the same link to access datain database A. If local users on database B want to
access data on database A, they must define alink that is stored in the data dictionary of database B.

A database link connection gives local users accessto data on a remote database. For this connection
to occur, each database in the distributed system must have a unique global database name. The global
database name uniquely identifies a database server in a distributed system.

The great advantage of database links is that they allow users to access another user’s objectsin a
remote database so that they are bounded by the privilege set of the object’s owner. In other words, a
local user can access a remote database without having to be a user on the remote database.

The example shows a user SCOTT accessing the EMP table on the remote database with the global
name HQ ACME. COM

Note: Typically, the DBA isresponsible for creating the database link. The dictionary view
USER DB LI NKS containsinformation on links to which a user has access.

Introduction to Oracle9i: SQL 13-19




Database Links

* (Create the database link.

CREATE PUBLI C DATABASE LI NK hqg. acne. com
USI NG ' sal es’ ;
Dat abase |ink created.

* Write SQL statements that use the database link.

SELECT *
FROM enp@+Q. ACMVE. COM

‘ 13-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Database Links

The example shown creates a database link. The USI NG clause identifies the service name of aremote
database.

Once the database link is created, you can write SQL statements against the datain the remote site. If
asynonym is set up, you can write SQL statements using the synonym.

For example:
CREATE PUBLI C SYNONYM HQ EMP FOR enp@iQ ACME. COM

Then write a SQL statement that uses the synonym:
SELECT * FROM HQ_EMP;

Y ou cannot grant privileges on remote objects.

Instructor Note

L et the students know that using distributed databases encompasses much more than what is shown
here. If the students want more information, refer them to the Oracle9i Concepts, “Distributed
Database Concepts.”

Introduction to Oracle9i: SQL 13-20




Summary

In this lesson, you should have learned about DCL
statements that control access to the database and
database objects:

Statement Action

CREATE USER Creates a user (usually performed by
a DBA)

GRANT Gives other users privileges to
access the your objects

CREATE ROLE Creates a collection of privileges
(usually performed by a DBA)

ALTER USER Changes a user’s password

REVOKE Removes privileges on an object from
users

13-21 Copyright © Oracle Corporation, 2001. All rights reserved.
Summary

DBAs establishinitial database security for users by assigning privileges to the users.
e The DBA creates users who must have a password. The DBA is aso responsible for
establishing theinitial system privileges for a user.

* Oncethe user has created an object, the user can pass along any of the available object
privilegesto other users or to al users by using the GRANT statement.

« A DBA can createroles by using the CREATE ROLE statement to pass along a collection of
system or object privilegesto multiple users. Roles make granting and revoking privileges
easier to maintain.

e Userscan change their password by using the ALTER USER statement.
* You canremove privileges from users by using the REVOKE statement.

*  With data dictionary views, users can view the privileges granted to them and those that are
granted on their objects.

*  With database links, you can access data on remote databases. Privileges cannot be granted on
remote objects.

Introduction to Oracle9i: SQL 13-21



Practice 13 Overview

This practice covers the following topics:
® Granting other users privileges to your table

* Modifying another user’s table through the
privileges granted to you

* Creating asynonym

®* Querying the data dictionary views related to
privileges

13-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 13 Overview
Team up with other students for this exercise about controlling access to database objects.

Instructor Note

For this practice, divide the students into teams, and then pair off the teams so that half are Team 1s
and the other half are Team 2s.

Introduction to Oracle9i: SQL 13-22




Practice 13

1

What privilege should a user be given to log on to the Oracle Server? s this a system or an
object privilege?

What privilege should a user be given to create tables?

If you create atable, who can pass aong privileges to other users on your table?

You arethe DBA. Y ou are creating many users who reguire the same system privileges.
What should you use to make your job easier?

What command do you use to change your password?

Grant another user access to your DEPARTMENT S table. Have the user grant you query access
to hisor her DEPARTMENTS table.

Query al therowsin your DEPARTMVENTS table.

| DEPARTMENT ID | DEPARTMENT NAME | MANAGER ID | LOCATION_ID

| 10 | Administration | 200 | 1700
| 20 |Marketing | 201 | 1800
| 50 |Shipping | 124 | 1500
| B0 |IT | 103 | 1400
| A0 |Sales | 149 | 2600
| 90 |Executive | 100 | 1700
| 110 | Accounting | 205 | 1700
| 190 || Contracting | | 1700

B rows selected.

Add anew row to your DEPARTMENTS table. Team 1 should add Education as department
number 500. Team 2 should add Human Resources department number 510. Query the other
team’ stable.

Create a synonym for the other team’s DEPARTMVENTS table.

Introduction to Oracle9i: SQL 13-23



Practice 13 (continued)

10. Query all the rowsin the other team’s DEPARTMENTS table by using your synonym.

Team 1 SELECT statenent results:
| DEPARTMENT ID | DEPARTMENT NAME | MANAGER ID | LOCATION ID
| 10 | Administration | 200 | 1700
| 20 |Marketing | 201 | 1800
| 50 |Shipping | 124 | 1500
| B0 |IT | 103 | 1400
| A0 |Sales | 149 | 2600
| 90 |Executive | 100 | 1700
| 110 | Accounting | 205 | 1700
| 190 |Contracting | | 1700
| 500 |Education | |

9 rows selected.

Team 2 SELECT statenent results:
| DEPARTMENT ID | DEPARTMENT NAME | MANAGER ID | LOCATION_ID
| 10 | Admministration | 200 | 1700
| 20 |Marketing | 201 | 1800
| 50 |Shipping | 124 | 1500
| B0 (IT | 103 | 1400
| A0 |Sales | 149 | 2600
| 90 |Executive | 100 | 1700
| 110 |Accounting | 205 | 1700
| 190 ||Contracting | | 1700
| |

510 |Human Fesources

9 rows selected.

Introduction to Oracle9i: SQL 13-24




Practice 13 (continued)
11. Query the USER _TABLES data dictionary to see information about the tables that you own.

| TABLE_NAME
(COUNTRIES
\DEPARTMENTS
\DEPT

[EMP
[EMPLOYEES
JOBS
\JOB_GRADES
\JOB_HISTORY
ILOCATIONS
IREGIONS

10 rows selected.

12. Query the ALL_TABLES data dictionary view to see information about al the tables that you
can access. Exclude tables that you own.

Note: Your list may not exactly match the list shown below.

| TABLE_NAME | OWNER
IDEPARTMENTS [ owner

13. Revoke the SELECT privilege on your table from the other team.

14. Remove the row you inserted into the DEPARTMENTS table in step 8 and save the changes.

Introduction to Oracle9i: SQL 13-25



Instructor Note (for pages 13-14)

L et students know that the privilege(col,col) syntax can be used only with UPDATE. Most students
try to use this syntax with SELECT as shown below:

GRANT SELECT(sal ary, | ast _nane)

ON enpl oyees TO scott;
The above syntax returnsthe error ERROR at |ine 1: ORA-00969: nissing ON
keywor d.

Instructor Note

L et students know about fine-grained access control. Using fine-grained access control, you can
implement security policies with functions and then associate those security policies with tables or
views. The database server automatically enforces those security policies, no matter how the datais
accessed (for example, by ad hoc queries).
Y ou can:

» Usedifferent policies for SELECT, | NSERT, UPDATE, and DELETE commands

» Use security policies only where you need them (for example, on salary information)

» Use more than one poalicy for each table, including building on top of base policiesin

packaged applications

For the implementation of fine-grained access control, you may need to use functions or packagesin
PL/SQL. The PL/SQL DBMS_RLS package enables you to administer your security policies. Using
this package, you can add, drop, enable, disable, and refresh the policies you create. For more
information on implementing fine-grained access control, refer to: Oracledi Concepts, “Fine-
Grained Access Control.”

Introduction to Oracle9i: SQL 13-26



SQL Workshop

Copyright © Oracle Corporation, 2001. All rights reserved.




Workshop Overview

This workshop covers:

* Creating tables and sequences
* Modifying data in the tables

* Modifying table definitions

* Creating views

* Writing scripts containing SQL and iSQL*Plus
commands

®* Generating a simple report

14-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Workshop Overview

In this workshop you build a set of database tables for a video application. After you create the tables,
you insert, update, and delete recordsin avideo store database and generate areport. The database
contains only the essentia tables.

Note: If you want to build the tables, you can execute the commandsin the bui | dt ab. sql scriptin
iSQL*Plus. If you want to drop the tables, you can execute the commandsin dr opvi d. sql scriptin
iSQL*Plus. Then you can execute the commandsin bui | dvi d. sql scriptiniSQL*Plusto create
and populate thetables. If you usethe bui | dvi d. sql script to build and populate the tables, start
with step 6b.

Introduction to Oracle9i: SQL 14-2




Video Application Entity Relationship Diagram

f (" TITLE )
r #* id
RESERVATION ]\1 ——d  <tte
#* res date J/ [ the subject * description
of o rating
_Y_setup for o category
o release date
\ J
1
Iavailable as
|
) |
responsible I acopy
for I
TITLE_COPY
(" vEmBer ) #*id
#* id * status
* last name | .
o first name I the subject of
0 address responsible
8 g'r%ne for made against I
* join date ———— RENTAL
created #* book date
& J for 0 act ret date

0 exp ret date

Introduction to Oracle9i: SQL 14-3



Practice 14

1. Createthe tables based on the following table instance charts. Choose the appropriate data types
and be sure to add integrity congtraints.

a. Table name: MEMBER

Column_ | MEMBER_ | LAST_ FI RST_NAM | ADDRESS aTy PHONE JAON

Name I D NAME E _
DATE

Key PK

Type

Null/ NN,U NN NN

Unique

Default System

Value Date

Data NUMBER VARCHAR2 | VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 | DATE

Type

Length 10 25 25 100 30 15

b. Table name: Tl TLE

Column TITLE_ID | TI TLE DESCRI PTI ON | RATI NG CATEGORY RELEASE
Name DATE
Key PK
Type
Null/ NN,U NN NN
Unique
Check G, PG, R, DRAMA,
NC17, NR COMEDY

ACTION,

CHILD,

SCIFH,

DOCUMEN

TARY
Data Type | NUMBER VARCHARZ | VARCHARZ VARCHAR? | VARCHARZ | DATE
Length 10 60 400 4 20

Introduction to Oracle9i: SQL 14-4



Practice 14 (continued)
c. Tablename: TI TLE_COPY

Column COPY_ID TITLE_ID STATUS

Name

Key PK PK,FK

Type

Null/ NN,U NN,U NN

Unique

Check AVAILABLE,
DESTROYED,
RENTED,
RESERVED

FK Ref TITLE

Table

FK Ref TITLE_I D

Col

Data NUMBER NUMBER VARCHAR2

Type

L ength 10 10 15

d. Table name: RENTAL

Column BOOK | MEMBER _ COPY_ ACT_RET_ | EXP_RET_ | TI TLE_

Name DATE I D I D DATE DATE I D

Key PK PK,FK1 PK,FK2 PK,FK2

Type

Default System System Date

Value Date + 2 days

FK Ref MVEMBER TI TLE TI TLE_

Table CoPY COPY

FK Ref MEMBER | | COPY_ TITLE ID

Col D I D

Data DATE NUMBER NUMBER | DATE DATE NUMBER

Type

Length 10 10 10

Introduction to Oracle9i: SQL 14-5




Practice 14 (continued)

e. Table name: RESERVATI ON

Column RES VEMBER _ TITLE
Name DATE | D I D

Key PK PK,FK1 PK,FK2
Type

Null/ NN,U NN,U NN
Unigue

FK Ref MVEMBER TI TLE
Table

FK Ref VEMBER | D TITLE I D
Column

Data Type DATE NUMBER NUVBER
Length 10 10

2. Veify that the tables and constraints were created properly by checking the datadictionary.

| TABLE_NAME

IMEMBER

IRENTAL

IRESERWATION

TITLE

TITLE_COPY

| CONSTRAINT_NAME [c [ TABLE_NAME
IMEMBER_LAST_MAME_MNN ic [MEMBER
IMEMBER_JOIN_DATE_MNM ic [MEMBER
IMEMBER_MEMBER_ID_PK P [MEMBER
IREMTAL_BOOK_DATE_COPY_TITLE_PK P [RENTAL
IRENTAL_MEMBER_ID_FK R [REMNTAL
IRENTAL_COPY_ID_TITLE_ID_FK R [RENTAL

[RESERVATION_RESDATE_MEM_TIT_PK

P [RESERVATION

|RESERVATIDN_MEMEEER_ID

R [RESERVATION

[RESERVATION_TITLE_ID

R [RESERVATION

TITLE_TITLE_MM

c [TmLE

18 rows selected.

Introduction to Oracle9i: SQL 14-6




Practice 14 (continued)

3. Create sequences to uniquely identify each row in the MEMBER table and the Tl TLE table.

a. Member number for the MEMBER table: Start with 101; do not alow caching of the
values. Name the sequence MEMBER_| D_SEQ.

b. Title number for the Tl TLE table: Start with 92; no caching. Name the sequence
TI TLE_I D_SEQ

c. Veify the existence of the sequencesin the data dictionary.

| SEQUENCE_NAME | INCREMENT_BY | LAST NUMBER
TITLE_ID_SEQ | 1| 92
IMEMBER_ID_SEQ | 1| 101

4. Add datato thetables. Create a script for each set of datato add.

a Add movietitlestothe Tl TLE table. Write a script to enter the movie information.
Save the statementsin ascript named | ab14_4a. sqgl . Use the sequencesto uniquely
identify each title. Enter the release dates in the DD- MON- YYYY format. Remember
that single quotation marks in a character field must be specially handled. Verify your
additions.

| TITLE
|Wi||ie and Christmas Too

|ﬂalien Again

The Glob

My Day Off

|h-'1iran:|es an lce

|S|:u:|a EETTY

B rows selected.

Introduction to Oracle9i: SQL 14-7



Practice 14 (continued)

Title Description Rating | Category | Release date
Willie and All of Willie'sfriendsmake | G CHILD 05-0OCT-1995
Christmas a Christmas list for Santa, but
Too Willie has yet to add his own
wish list.
Alien Again | Yet another installation of R SCIFI 19-MAY-1995
science fiction history. Can
the heroine save the planet
from the dlien life form?
The Glob A meteor crashes near a NR SCIFI 12-AUG-1995
small American town and
unleashes carnivorous goo in
this classic.
My Day Off | With alittleluck and alot of | PG COMEDY | 12-JUL-1995
ingenuity, ateenager skips
school for aday in New
York.
Miracleson | A six-year-old has doubts PG DRAMA 12-SEP-1995
Ice about Santa Claus, but she
discovers that miraclesreally
do exist.
Soda Gang After discovering acacheof | NR ACTION | 01-JUN-1995

drugs, ayoung couple find
themselves pitted against a
vicious gang.

Introduction to Oracle9i: SQL 14-8




Practice 14 (continued)

b. Add datato the MEMBER table. Place the insert statementsin a script named

| abl4 4b. sql . Execute commands in the script. Be sure to use the sequence to add the

member numbers.

First

Name | Last Name | Address City Phone Join_Date

Carmen | Velasguez 283 King Sesttle 206-899-6666 | 08-MAR-1990
Street

LaDoris | Ngao 5 Modrany Bratisava | 586-355-8882 | 08-MAR-1990

Midori | Nagayama | 68 Via Sao Paolo | 254-852-5764 | 17-JUN-1991
Centrale

Mark Quick-to- 6921 King Lagos 63-559-7777 | 07-APR-1990

See Way
Audry | Ropeburn 86 Chu Street | Hong 41-559-87 18-JAN-1991
Kong
Molly Urguhart 3035 Laurier Quebec 418-542-9988 | 18-JAN-1991

Introduction to Oracle9i: SQL 14-9




Practice 14 (continued)

¢. Add thefollowing movie copiesinthe Tl TLE COPY table:
Note: Havethe Tl TLE | D numbers available for this exercise.

Title Copy_ld Status
Willieand Chrissmas Too | 1 AVAILABLE
Alien Again 1 AVAILABLE
2 RENTED
The Glob 1 AVAILABLE
My Day Off 1 AVAILABLE
2 AVAILABLE
3 RENTED
Miracles on Ice 1 AVAILABLE
Soda Gang 1 AVAILABLE

d. Addthefollowing rentalsto the RENTAL table:

Note: Title number may be different depending on sequence number.

Title_ | Copy_ Member_

Id Id Id Book_date | Exp_Ret _Date Act_Ret Date
92 1 101 3daysago 1 day ago 2 daysago

93 2 101 1 day ago 1 day from now

95 3 102 2 days ago Today

97 1 106 4 days ago 2 daysago 2 daysago

Introduction to Oracle9i: SQL 14-10




Practice 14 (continued)

5. Createaview named TI TLE_AVAI L to show the movie titles and the availability of
each copy and its expected return date if rented. Query all rows from the view. Order the results
by title.

Note: Y our results may be different.

| TITLE | COPY.ID |  STATUS | EXP_RET D
Alien Again | 1 | AVAILABLE |

Alien Again | 2 |RENTED 26-SEP-01
IMiracles on Ice | 1 | AWAILABLE |

My Day Off | 1 | AVAILABLE |

My Day Off | 2 | AWAILABLE |

My Day Off | 3 |RENTED 27-5EP-01
|Soda Gang | 1 | AWAILABLE 25-5EP-01

The Glab | 1 |AVAILABLE |

Willie and Christrnas Too | 1 | AVAILABLE 26-SEP-01

9 rows selected.

6. Make changesto datain thetables.

a Addanew title. Themovieis*“Interstellar Wars,” which is rated PG and classified as a
science fiction movie. Therelease dateis 07-JUL-77. The description is“ Futuristic
interstellar action movie. Can the rebels save the humans from the evil empire?’ Be sureto
add atitle copy record for two copies.

b. Enter two reservations. One reservation is for Carmen Velasquez, who wants to rent
“Interstellar Wars.” The other isfor Mark Quick-to-See, who wants to rent “ Soda
Gang.”

Introduction to Oracle9i: SQL 14-11



Practice 14 (continued)

c. Customer Carmen Velasquez rents the movie “Interstellar Wars,” copy 1. Remove her
reservation for the movie. Record the information about the rental. Allow the default
value for the expected return date to be used. Verify that the rental was recorded by
using the view you crested.

Note: Y our results may be different.

| TITLE | COPY.ID | STATUS | EXP_RET D
Align Again | 1 |AVAILABLE |

Alien Again | 2 |RENTED 26-SEP-01
Interstellar Wars | 1 |RENTED 29-5EP-01
Interstellar Wars | 2 |AvAILABLE |

IMiracles on lce | 1 |AWAILABLE |

Wty Day Off | 1 |AWAILABLE |

My Day Off | 2 |AWAILABLE |

Ny Day Off | 3 |RENTED 27-SEP-01
Soda Gang | 1 |AWAILABLE 25-5EP-01
The Glob | 1 |AWAILABLE |

Willie and Christras Too | 1 |AvAILABLE 26-SEP-01

11 rows selected.

7. Make amodification to one of the tables.

a. Add aPRI CE columntothe Tl TLE tableto record the purchase price of the video.
The column should have atotal length of eight digits and two decimal places. Verify
your modifications.

| Name | Null? | Type
TITLE_ID IMOT MULL IMUMBER(10)
TITLE IMOT MULL WARCHARZ(B)
IDESCRIPTION IMOT MULL WARCHARZ(400)
IRATING | WARCHARZ(4)
(CATEGORY | WARCHARZ(20)
IRELEASE_DATE | IDATE

IPRICE | IMUMBER( 2)

Introduction to Oracle9i: SQL 14-12



Practice 14 (continued)

b. Createascript named | ab14_7b. sqgl that contains update statements that update
each video with a price according to the following list. Run the commandsin the
script.

Note: Havethe Tl TLE | D numbers available for this exercise.

Title Price
Willie and Christmas Too 25
Alien Again 35
The Glob 35
My Day Off 35
Miracles on Ice 30
Soda Gang 35
Interstellar Wars 29

c. Make surethat in the future al titles contain a price value. Verify the constraint.

| CONSTRAINT NAME [C | SEARCH_CONDITION
TITLE_TITLE_NN [ ['TITLE" IS NOT NULL
TITLE_PRICE_NN [C ["PRICE" 1S NOT NULL |

B rows selected.

8. Create areport titled Customer History Report. This report contains each customer’s
history of renting videos. Be sure to include the customer name, movie rented, dates of the rental,
and duration of rentals. Total the number of rentals for al customers for the reporting period.
Save the commands that generate the report in ascript filenamed | ab14_8. sql .

Note: Y our results may be different.

Thu Sep 27 Customer History Report page 1

| MEMBER | TITLE | BOOK _DATE | DURATION
|Carmen Welasguez |Wi||ie and Christmas Toa |24-SEF'-EI1 | 1
| Alien Again |26-5EP-01 |

| Interstellar Wars |27-5EP-D1 |

LaDoris Mgan My Day Off |25-5EP-01 |

IMolly Urguhart |Soda Gang |23-5EP-01 | 2

Introduction to Oracle9i: SQL 14-13



Introduction to Oracle9i: SQL 14-14



Using SET Operators

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Schedule: Timing Topic
30 minutes Lecture
20 minutes Practice

50 minutes Totd




Objectives

After completing this lesson, you should be able
to do the following:

®* Describe SET operators

®* Use a SET operator to combine multiple queries
into a single query

® Control the order of rows returned

15-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim
In thislesson, you learn how to write queries by using SET operators.

Introduction to Oracle9i: SQL 15-2



The SET Operators

A B A B
@:) UNI ONVUNI ON ALL
| NTERSECT
M NUS

15-3 Copyright © Oracle Corporation, 2001. All rights reserved.

The SET Operators

The SET operators combine the results of two or more component queries into one result. Queries
containing SET operators are called compound queries.

Operator Returns

UNION All distinct rows selected by ether query

UNION ALL All rows selected by either query, including all duplicates

INTERSECT All distinct rows selected by both queries

MINUS All distinct rows that are selected by the first SELECT
statement and not selected in the second SELECT statement

All SET operators have equal precedence. If a SQL statement contains multiple SET operators, the
Oracle server evaluates them from left (top) to right (bottom) if no parentheses explicitly specify
another order. Y ou should use parentheses to specify the order of evaluation explicitly in queries that
use the | NTERSECT operator with other SET operators.

Note: In the dide, the light color (gray) in the diagram represents the query result.

Instructor Note
The | NTERSECT and M NUS operators are not ANSI SQL-99 compliant. They are Oracle-specific.

Introduction to Oracle9i: SQL 15-3



Tables Used in This Lesson

The tables used in this lesson are:

e EMPLOYEES: Provides details regarding all
current employees

® JOB HI STORY: Records the details of the start date
and end date of the former job, and the job
identification number and department when an
employee switches jobs

15-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Tables Used in This Lesson
Two tables are used in thislesson. They are the EMPLOYEES table and the JOB_HI STORY table.

The EMPLOYEES table stores the employee details. For the human resource records, this table stores
aunique identification number and email address for each employee. The details of the employee’s
job identification number, salary, and manager are also stored. Some of the employees earn a
commission in addition to their salary; thisinformation is tracked too. The company organizesthe
roles of employeesinto jobs. Some of the empl oyees have been with the company for along time and
have switched to different jobs. Thisis monitored using the JOB_HI STORY table. When an
employee switches jobs, the details of the start date and end date of the former job, the job
identification number and department are recorded inthe JOB_HI STORY table.

The structure and the data from the EMPLOYEES and the JOB_HI STORY tables are shown on the
next page.

There have been instances in the company of people who have held the same position more than once
during their tenure with the company. For example, consider the employee Taylor, who joined the
company on 24-MAR-1998. Taylor held thejob title SA REP for the period 24-MAR-98 to 31-DEC-
98 and thejob title SA_MAN for the period 01-JAN-99 to 31-DEC-99. Taylor moved back into the job
title of SA_REP, whichis his current job title.

Similarly consider the employee Whalen, who joined the company on 17-SEP-1987. Whalen held the
jobtitle AD_ASST for the period 17-SEP-87 to 17-JUN-93 and the job title AC_ACCOUNT for the
period 01-JUL-94 to 31-DEC-98. Whalen moved back into the job title of AD_ASST, which ishis
current job title.

Introduction to Oracle9i: SQL 15-4



Tables Used in This Lesson (continued)
DESC enpl oyees

| Name | Null? | Type
[EMPLOYEE_ID INOT MULL INUMBER(E)
IFIRST_NAME | WARCHARZ (20)
ILAST_MAME INOT MULL WARCHARZ (25)
[EMAIL INOT MULL WARCHARZ(25)
IPHOME_MUMBER | WARCHARZ (20)
IHIRE_DATE INOT MULL IDATE

\JOB_ID INOT MULL WARCHARZ(10)
|SALARY | IMUMBER(S ,2)
(COMMISSION_PCT | IMUMBER{2 2)
IMANAGER_ID | INUMBER(E)
\DEPARTMENT _ID | IMUMBER(4)
IDEPARTMENT_NAME | WARCHARZ(14)

SELECT enpl oyee i d,

| ast _nane,

FROM enpl oyees;

job_id, hire_date,

departnent _id

Introduction to Oracle9i: SQL 15-5

| EMPLOYEE_ID | LAST NAME | JOB_ID | HIRE_DATE | DEPARTMENT ID

| 100 ||King wD_PRES n7-Junsr | a0
| 101 |[Kochhar D WP [21-5EP-83 | a0
| 102 |De Haan AD WP N3-Jang3 | a0
| 103 |Hunold IT_PROG 03-JaNS0 | RO
| 104 |Emst IT_PROG 21-mAavY-91 | GO
| 107 |Lorertz IT_PROG 07-FEB-33 | B0
| 124 |Mourgos IST_MAN MB-MOW-33 | 50
| 141 |Rajs |ST_CLERK N7-0CT-95 | 50
| 142 |Davies |ST_CLERK 29-JANG7 | 500
| 143 |Matos |ST_CLERK 15-MAR-98 | 50
| 144 [Wargas |ST_CLERK 09-JuLss | 50
| 149 | Zlotkey |54 MAN 29-JAN-00 | a0
| 174 || Abel 1S4 _REP M-MAY-DE | A0
1] 176 |Taylor S4_REP 24-MAR-98 a0 |
| EMPLOYEE_ID | LAST_NAME JOB_ID HIRE_DATE | DEPARTMENT ID

| 178 |Grant |54 _REP 24-mAY09 |

| 200 [Whalen AD_ASET 17-SEP-87 10
| 201 [Hartstein MK_MAN 17-FEB-96 20




Tables Used in This Lesson (continued)
DESC j ob_hi story

| Name | Null? | Type
[EMPLOYEE_ID INOT MULL INUMBER(E)
|START_DATE IMOT MULL \DATE

[END_DATE INOT MULL \DATE

WOB_ID IMOT MULL WARCHAR2(10)
IDEPARTMENT _ID | INUMBER(4)

SELECT * FROM j ob_history;

| EMPLOYEE_ID | START DAT | END DATE | JOB_ID | DEPARTMENT ID

| 102 |[13-JAN-93 24-JUL-98  |IT_PROG | B0
| 101 [21-SEP-89 27-0CT93  |AC_ACCOUNT | 110
| 101 [28-0CT-93 M58-MAR-97  |AC_MGR | 110
| 201 17-FEB-96 19-DEC-93  |MK_REP | 20
| 114 ||[24-MAR-9B 3-DEC-93  |ST_CLERK | 500
| 122 [01-JAN-99 31-DEC-93  |ST_CLERK | 50
| 200 |17-SEP-87 M7-JUN-93  |AD_ASST | a0
| 176 |[24-MAR-38 31-DEC-98  |SA_REP | a0
| 176 | 01-JAN-29 F-DEC99  |SA_MAN | a0
| 200 |01-JUL-34 31-DEC-38  |AC_ACCOUNT | a0

10 rows selected.

Introduction to Oracle9i: SQL 15-6



The UNI ON Operator

A B

The UNI ON operator returns results from both queries
after eliminating duplications.

15-7 Copyright © Oracle Corporation, 2001. All rights reserved.

The UNI ON Operator

The UNI ON operator returns all rows selected by either query. Use the UNI ON operator to return all
rows from multiple tables and eliminate any duplicate rows.

Guidelines

e Thenumber of columns and the datatypes of the columns being selected must be identical in al
the SELECT statements used in the query. The names of the columns need not be identical.

* UNI ON operates over al of the columns being selected.

e NULL values are not ignored during duplicate checking.

» Thel Noperator has a higher precedence than the UNI ON operator.

* By default, the output is sorted in ascending order of the first column of the SELECT clause.

Instructor Note
Toillustrate the UNI ON SET operator, run the script deno\ 15 _uni onl. sql .
Point out that the output is sorted in ascending order of the first column of the SELECT clause.

Introduction to Oracle9i: SQL 15-7



Using the UNI ON Operator

Display the current and previous job details of all
employees. Display each employee only once.
SELECT enpl oyee_id, job_id

FROM  enpl oyees

UNI ON
SELECT enpl oyee_id, job_id
FROM  job_history;

| EMPLOYEE_ID | JOB_ID
| 100 [AD_PRES
| 101 |[AC_ACCOUNT

200 [AC_ACCOUNT
200 |[AD_ASST

| 205 [AC_MGR
| 206 |[AC_ACCOUNT

15-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the UNI ON SET Operator

The UNI ON operator eliminates any duplicate records. If there are records that occur both in the
EMPLOYEES and the JOB_HI STORY tables and are identical, the records will be displayed only
once. Observe in the output shown on the dide that the record for the employee with the
EMPLOYEE_| D 200 appearstwice asthe JOB_| Disdifferent in each row.

Consider the following example:

SELECT enployee_id, job_id, departnent_id
FROM enpl oyees

UNI ON

SELECT enployee_id, job_id, departnent_id
FROM j ob_history;

| EMPLOYEE_ID | JOB_ID | DEPARTMENT_ID

200 |AC_ACCOUNT | a0
| 200 |AD_ASST | 10
| 200 |AD_ASST | 90

29 rows selected.

Introduction to Oracle9i: SQL 15-8



Using the UNI ON SET Operator (continued)
In the preceding output, employee 200 appears three times. Why? Notice the DEPARTMENT _I D
values for employee 200. One row has a DEPARTMVENT _| D of 90, another 10, and the third 90.
Because of these unique combinations of job IDs and department 1Ds, each row for employee 200 is
unique and therefore not considered a duplicate. Observe that the output is sorted in ascending order
of the first column of the SELECT clause, EMPLOYEE | Dinthiscase.

Introduction to Oracle9i: SQL 15-9



The UNI ON ALL Operator

A B

The UNI ON ALL operator returns results from both
gueries, including all duplications.

15-10 Copyright © Oracle Corporation, 2001. All rights reserved.

The UNI ON ALL Operator
Usethe UNI ON ALL operator to return al rows from multiple queries.
Guidelines
e Unlike UNI ON, duplicate rows are not eliminated and the output is not sorted by default.
» TheDI STI NCT keyword cannot be used.
Note: With the exception of the above, the guidelines for UNI ONand UNI ON ALL are the same.

Introduction to Oracle9i: SQL 15-10



Using the UNI ON ALL Operator

Display the current and previous departments of
all employees.

SELECT enpl oyee_id, job_id, departnent_id
FROM _ enpl oyees

UNI ON ALL
SELECT enpl oyee_id, job_id, department_id
FROM job_history

ORDER BY enpl oyee_ i d;

| EMPLOYEE_ID | JOB_ID | DEPARTMENT_ID

| 100 |[AD_PRES | a0
| 101 [AD_vP | 50
| 200 [[AD_ASST | 10
| 200 [AD_ASST | a0
| 200 [AC ACCOUNT | a0
| 205 [AC_MGR | 110
| 206 |[AC_ACCOUNT | 110

30 rows selected.

15-11 Copyright © Oracle Corporation, 2001. All rights reserved.

The UNI ON ALL Operator (continued)

In the example, 30 rows are selected. The combination of the two tables totalsto 30 rows. The

UNI ON ALL operator does not eliminate duplicate rows. The duplicate rows are highlighted in the
output shown in the slide. UNI ONreturns al distinct rows selected by either query. UNI ON ALL
returns al rows selected by either query, including all duplicates. Consider the query on the dide,
now written with the UNI ON clause:

SELECT enmployee_id, job_id, departnent _id

FROM enpl oyees

UNI ON

SELECT enployee_id, job_id, departnent _id
FROM job_history

ORDER BY enpl oyee i d;
The preceding query returns 29 rows. Thisis because it eliminates the following row (asitisa
duplicate):

| EMPLOYEE_ID | JOB_ID | DEPARTMENT _ID
| 176 |SA_REP | a0

Instructor Note
Note that thisis the example from page 15-8.

Introduction to Oracle9i: SQL 15-11



The | NTERSECT Operator

A B

15-12 Copyright © Oracle Corporation, 2001. All rights reserved.

The | NTERSECT Operator

Use the | NTERSECT operator to return all rows common to multiple queries.
Guidelines

The number of columns and the datatypes of the columns being selected by the SELECT

statements in the queries must be identical in all the SELECT statements used in the query. The
names of the columns need not be identical.

* Reversing the order of the intersected tables does not ater the result.
e | NTERSECT does not ignore NULL values.

Instructor Note
Toillustrate the | NTERSECT SET operator, run the script deno\ 15_i nters. sql .

Introduction to Oracle9i: SQL 15-12




Using the | NTERSECT Operator

Display the employee IDs and job IDs of employees
who currently have ajob title that they held before
beginning their tenure with the company.

SELECT enpl oyee_id, job_id
FROM  enpl oyees

SELECT enpl oyee_id, job_id
FROM job_history;

| EMPLOYEE_ID | JOB_ID
| 176 [SA_REP
| 200 [AD_ASST

15-13 Copyright © Oracle Corporation, 2001. All rights reserved.

The | NTERSECT Operator (continued)

In the example in this dide, the query returns only the records that have the same valuesin the
selected columns in both tables.

What will be the resultsif you add the DEPARTMENT _| D column to the SELECT statement from
the EMPLOYEES table and add the DEPARTMENT _| D column to the SELECT statement from the
JOB_HI STORY table and run this query? The results may be different because of the introduction of
another column whose values may or may not be duplicates.

Example
SELECT enployee id, job_id, departnent _id
FROM  enpl oyees
| NTERSECT
SELECT enpl oyee_id, job_id, departnent_id
FROM job_history;

| EMPLOYEE_ID |  JOB.ID | DEPARTMENT _ID
| 176 |SA_REP | a0

Employee 200 is no longer part of the results because the EMPLOYEES.DEPARTMENT _| Dvalueis
different from the JOB_HI STORY.DEPARTMENT _| Dvaue.

Introduction to Oracle9i: SQL 15-13



The M NUS Operator

A B

15-14 Copyright © Oracle Corporation, 2001. All rights reserved.

The M NUS Operator
Use the M NUS operator to return rows returned by the first query that are not present in the second
guery (thefirst SELECT statement M NUS the second SELECT statement).
Guidelines

*  Thenumber of columns and the datatypes of the columns being selected by the SELECT
statements in the queries must be identical in all the SELECT statements used in the query. The
names of the columns need not be identical.

» All of the columnsin the WHERE clause must bein the SELECT clause for the M NUS operator
to work.

Instructor Note
Toillustrate the M NUS operator, run the script deno\ 15_m nus. sql .

Introduction to Oracle9i: SQL 15-14



The M NUS Operator

Display the employee IDs of those employees who have
not changed their jobs even once.

SELECT enpl oyee_id,job_id
FROM  enpl oyees

SELECT enpl oyee_id,job_id
FROM job_history;

| EMPLOYEE_ID | JOB_ID
| 100 [AD_PRES

| 101 [aD_vP
|
|

102 [AD_vP
103 |IT_PROG

| 201 [MK_MAN
| 202 |[MK_REP

| 205 [AC_MGR

| 206 [AC_ACCOUNT
1

8 rows selected.

15-15 Copyright © Oracle Corporation, 2001. All rights reserved.

The M NUS Operator (continued)

In the example in the dide, the employee IDs and Job IDsinthe JOB_HI STORY table are subtracted
from those in the EMPLOYEES table. The results set displays the employees remaining after the
subtraction; they are represented by rows that exist in the EMPLOYEES table but do not exist in the
JOB_HI STORY table. These are the records of the employees who have not changed their jobs even

once.

Introduction to Oracle9i: SQL 15-15



SET Operator Guidelines

®* The expressions in the SELECT lists must match in
number and data type.

®* Parentheses can be used to alter the sequence of
execution.

* The ORDER BY clause:

— Can appear only at the very end of the statement

— Will accept the column name, aliases from the first
SELECT statement, or the positional notation

15-16 Copyright © Oracle Corporation, 2001. All rights reserved.

SET Operator Guidelines

» Theexpressionsin the select lists of the queries must match in number and datatype. Queries that
use UNI ON, UNI ON ALL, | NTERSECT, and M NUS SET operators in their WHERE clause must
have the same number and type of columnsin their SELECT list. For example:

SELECT enpl oyee_id, departnent_id
FROM  enpl oyees
WHERE (enpl oyee_id, departnent_id)
I N (SELECT enpl oyee id, departnent _id
FROM  enpl oyees
UNI ON
SELECT enpl oyee_id, departnent_id
FROM job_history);
*+ The ORDER BY clause:
— Can appear only at the very end of the statement
—  Will accept the column name, an alias, or the positional notation
* Thecolumn name or dlias, if usedin an ORDER BY clause, must be from the first SELECT list.

» SET operators can be used in subqueries.

Instructor Note

Y ou might want to mention that the ORDER BY clause accepts the column name only if the column
has the same name from both queries.

Introduction to Oracle9i: SQL 15-16



The Oracle Server and SET Operators

* Duplicate rows are automatically eliminated except
in UNI ON ALL.

® Column names from the first query appear in the
result.

* The output is sorted in ascending order by default
exceptin UNI ON ALL.

15-17 Copyright © Oracle Corporation, 2001. All rights reserved.

The Oracle Server and SET Operators

When a query uses SET operators, the Oracle Server eliminates duplicate rows automatically except in
the case of the UNI ON ALL operator. The column namesin the output are decided by the column list
inthefirst SELECT statement. By default, the output is sorted in ascending order of the first column of
the SELECT clause.

The corresponding expressions in the select lists of the component queries of a compound query must
match in number and datatype. If component queries select character data, the datatype of the return
values are determined as follows:

e I both queries select values of datatype CHAR, the returned values have datatype CHAR.

» If either or both of the queries select values of datatype VARCHARZ, the returned values
have datatype VARCHARZ.

Instructor Note

Y ou might want to mention that the output is sorted in ascending order of the first column, then the
second column, and so on, of the SELECT clause.

Introduction to Oracle9i: SQL 15-17



Matching the SELECT Statements

Using the UNI ON operator, display the department ID,
location, and hire date for all employees.

SELECT departnent _id, TO _NUMBER(nul l)
| ocation, hire_date
FROM  enpl oyees
UNI ON
SELECT departnent _id, location_id, TO DATE(null)
FROM departnents;

| DEPARTMENT_ID | LOCATION | HIRE_DATE
| 10| 1700 ||

| 10 [17-SEP-67

| 20 1800 ||

| 20| [17-FEB-96

| 10| 1700 ||

| 10| [p7-dun-ga

| 190 || 1700 ||

| | [24-mav-a3

27 rows selected.

15-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Matching the SELECT Statements

Asthe expressionsin the select lists of the queries must match in number, you can use dummy columns
and the datatype conversion functions to comply with thisrule. In the dide, the name | ocati onis
given as the dummy column heading. The TO_NUMBER function is used in the first query to match the
NUMBER datatype of the LOCATI ON_I D column retrieved by the second query. Similarly, the
TO_DATE function in the second query is used to match the DATE datatype of the Hl RE_DATE
column retrieved by the first query.

Instructor Note
Demonstration: deno\ 15_uni on3. sql , deno\ 15_dumy. sql

Purpose: The demonstration 15_uni on3. sql illustrates using conversion functions while matching
columns in the two select lists. The demonstration 15_dunry. sgl uses dummy columnsin order to
match the select lists. For the 15_dummy. sql , run the script, then uncomment the REMARKS, add
ORDER BY 2, and rerun.

Y ou might want to mention that the conversion functions in the code shown on the dide are not
mandatory. The code will work fine even without the conversion functions, but it is recommended to
explicitly convert values for performance benefits.

Introduction to Oracle9i: SQL 15-18



Matching the SELECT Statement

* Using the UNI ON operator, display the employee
ID, job ID, and salary of all employees.

SELECT enpl oyee_id, job_id, salary
FROM  enpl oyees

UNI ON

SELECT enpl oyee_id, job_id, O
FROM job_history;

| EMPLOYEE_ID | JOB_ID | SALARY

| 100 |AD_PRES 24000
| 101 [AC_ACCOUNT 0
| 101 [AC MR [ 0
| 205 [AC_MGR | 12000
| 206 |[AC_ACCOUNT | 8300

30 rows selected.

15-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Matching the SELECT Statement: Example

The EMPLOYEES and JOB_HI STORY tables have several columnsin common; for example,
EMPLOYEE | D,JOB | D and DEPARTMENT | D. But what if you want the query to display the
EMPLOYEE | D, JOB_| D, and SALARY using the UNI ON operator, knowing that the salary exists
only in the, EMPLOYEES table?

The code example in the dide matches the EMPLOYEE | D and the JOB_| D columnsin the
EMPLOYEES and inthe JOB_HI STORY tables. A literal value of 0isaddedtotheJOB_HI STORY
SELECT statement to match the numeric SALARY column in the EMPLOYEES SELECT statement.

In the preceding results, each row in the output that correspondsto arecord fromthe JOB_HI STORY
table contains a 0 in the SALARY column.

Introduction to Oracle9i: SQL 15-19




Controlling the Order of Rows

Produce an English sentence using two
UNI ON operators.

COLUWN a_dummy NOPRI NT

SELECT "sing’” AS "My dreant, 3 a_dummy
FROM dual

UNI ON

SELECT 'I’'d like to teach’, 1

FROM dual

UNI ON

SELECT "the world to', 2

FROM dual

ORDER BY 2;

| My dream
I'd like to teach
|the wiarld to

|sing

15-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling the Order of Rows
By default, the output is sorted in ascending order on the first column. Y ou can use the ORDER BY
clause to change this.
Using ORDER BY to Order Rows
The ORDER BY clause can be used only once in acompound query. If used, the ORDER BY clause
must be placed at the end of the query. The ORDER BY clause accepts the column name, an dlias, or
the positional notation. Without the ORDER BY clause, the code example in the dlide produces the
following output in the alphabetical order of the first column:

| My dream
I'd like ta teach

|sing

|the world to

Note: Consider a compound query where the UNI ON SET operator is used more than once. In this
case, the ORDER BY clause can use only positions rather than explicit expressions.

Instructor Note
Toillustrate the ordering of rows with a SET operator, run the script deno\ 15_set or d. sql .
Briefly explain the COLUMN command with the NOPRI NT option. Highlight the usage of the single
qguotesinthe’ 1’ " d |i ke to teach’ literd, inthe second SELECT statement. Y ou might want
to mention that one can only use ORDER BY with a column, alias, or position of the column of the
first query. Introduction to Oracle9i: SQL 15-20



Summary

In this lesson, you should have learned how to:
®* Use UNI ONto return all distinct rows

® Use UNI ON ALL to returns all rows, including
duplicates

®* Use | NTERSECT to return all rows shared by
both queries

® Use M NUSto return all distinct rows selected by
the first query but not by the second

* Use ORDER BY only at the very end of
the statement

15-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary
 TheUNI ON operator returns all rows selected by either query. Use the UNI ON operator to
return al rows from multiple tables and eliminate any duplicate rows.

» Usethe UNI ON ALL operator to return al rows from multiple queries. Unlike with the UNI ON
operator, duplicate rows are not eliminated and the output is not sorted by default.

* Usethel NTERSECT operator to return al rows common to multiple queries.

» Usethe M NUS operator to return rows returned by the first query that are not present in the
second query.

* Remember to usethe ORDER BY clause only at the very end of the compound statement.

* Make sure that the corresponding expressions in the SELECT lists match in number and
datatype.

Introduction to Oracle9i: SQL 15-21



Practice 15 Overview

This practice covers using the Oracle9i datetime
functions.

‘ 15-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 15 Overview
In this practice, you write queries using the SET operators.

Introduction to Oracle9i: SQL 15-22




Practice 15

1. List the department IDs for departments that do not contain thejob ID ST_CLERK, using
SET operators.

DEPARTMENT _ID

10
20

|
|
|
| B0
|
|
|
|

80
S0
110
190

7 rovwes selected.

2. Display the country ID and the name of the countries that have no departments located
in them, using SET operators.

| co | COUNTRY_NAME
|DE |Germany

3. Producealist of jobs for departments 10, 50, and 20, in that order. Display job ID and department
ID, using SET operators.

| JOB_ID | DEPARTMENT _ID

AD_ASST | 10
|ST_CLERK | 50
IST_MAN | A0
INAK_hAAN | 20
IniK_REP | 20

4. List the employee IDs and job IDs of those employees who currently hold the job title that they
held before beginning their tenure with the company.

| EMPLOYEE_ID | JOB_ID
| 176 |5A_REP
| 200 |AD_ASST

Introduction to Oracle9i: SQL 15-23



Practice 15 (continued)
5. Write acompound query that lists the following:

e Last names and department ID of al the employees from the EMPLOYEES tabl e, regardl ess of
whether or not they belong to any department or not

e Department ID and department name of al the departments from the DEPARTVENTS table,
regardless of whether or not they have employees working in them

Introduction to Oracle9i: SQL 15-24



Oracle9i Datetime Functions

Copyright © Oracle Corporation, 2001. All rights reserved.

Schedule: Timing Topic
30 minutes Lecture
20 minutes Practice

50 minutes Totd




Objectives

After completing this lesson, you should be able
use the following datetime functions:

16-2

TZ OFFSET
CURRENT_DATE
CURRENT_TI MESTAMP
LOCALTI MESTAMP
DBTI MEZONE

SESSI ONTI MEZONE
EXTRACT

FROM TZ

TO TI MESTAMP
TO TI MESTAMP_TZ
TO YM NTERVAL

Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

Thislesson addresses some of the datetime functions introduced in Oracle9i.

Introduction to Oracle9i: SQL 16-2




TIME ZONES

00:00 =02:00 +04:00 +06:00 +08:00 +10:00 +12:00 +14:00 +16:00 +18:00 +20:00 +22:00

Internatjonal
| Date Line

The image represents the time for
each time zone when Greenwich
time is 12:00.

16-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Time Zones

In Oracle9i, you can include the time zone in your date and time data, as well as provide support for
fractional seconds. This lesson focuses on how to manipulate the new datetime data types included
with Oracle9i using the new datetime functions. To understand the working of these functions, itis
necessary to be familiar with the concept of time zones and Greenwich Mean Time, or GMT.
Greenwich Mean Time, or GMT is now referred to as UTC (Coordinated Universal Time).

The hours of the day are measured by the turning of the earth. The time of day at any particular
moment depends on where you are. When it is noon in Greenwich, England, it is midnight along the
internationa date line. The earth is divided into 24 time zones, one for each hour of the day. Thetime
along the prime meridian in Greenwich, England is known as Greenwich mean time, or GMT. GMT
isthe time standard against which all other time zonesin the world are referenced. It isthe same all
year round and is not effected by summer time or daylight savingstime. The meridian lineis an
imaginary line that runs from the North Pole to the South Pole. It isknown as zero longitude and it is
the line from which al other lines of longitude are measured. All time is measured relative to
Greenwich mean time (GMT) and all places have alatitude (their distance north or south of the
equator) and alongitude (their distance east or west of the Greenwich meridian).

Daylight Saving Time

Most western nations advance the clock ahead one hour during the summer months. This period is
called daylight saving time. Daylight saving time lasts from the first Sunday in April to the last
Sunday in October in the most of the United States, Mexico and Canada. The nations of the European
Union observe daylight saving time, but they call it the summer time period. Europe’'s summer time
period begins aweek earlier than its North American counterpart, but ends at the same time.

Introduction to Oracle9i: SQL 16-3




Oracle9i Datetime Support

® In Oracle9i, you can include the time zone in your
date and time data, and provide support for
fractional seconds.

* Three new data types are added to DATE:
— TI MESTAWP

— TIMESTAWP WTH TI ME ZONE (TSTZ)

— TIMESTAWVP WTH LOCAL TIME ZONE (TSLTZ)

® Oracle9i provides daylight savings support for
datetime data types in the server.

16-4

Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i Datetime Support

With Oraclegi, three new data types are added to DATE, with the following differences:

precision) WTH

as the time zone displacement value
which indicates the hours and

Data Type Time Zone Fractional Seconds
DATE No No

TI MESTAMP No Yes

TI MESTAMP All values of TI MESTAMP aswell | fractional _
(fractional _seconds_ seconds

pr eci si on isthe

(fracti onal seconds
_precision)
W TH LOCAL TI ME ZONE

TI ME ZONE, with the following
exceptions:

e Dataisnormalized to the
database time zone when it
is stored in the database.

e Whenthedataisretrieved,
users seethe datain the
session time zone.

TI MEZONE minutes before or after UTC number of digitsin the
(Coordinated Universal Time, fractional part of the
formerly Greenwich mean time). SECOND datetime field.

Accepted values are 0
t0 9. The default is 6.
TI MESTAMP All valuesof TI MESTAMP W TH | Yes

Introduction to Oracle9i: SQL 16-4




Oracle9i Datetime Support (continued)

TI MESTAMP W TH LOCAL TI ME ZONE is stored in the database time zone. When a user selects
the data, the value is adjusted to the user’s session time zone.

Example:

A San Francisco database has system time zone = -8:00. When a New Y ork client (session time zone
=-5:00) insertsinto or selects from the San Francisco database, TI| MESTAMP W TH LOCAL TI ME
ZONE datais adjusted asfollows:

e TheNew York clientinserts TI MESTAMP ' 1998- 1- 23 6: 00: 00-5: 00’ intoa
TI MESTAMP W TH LOCAL TI ME ZONE column in the San Francisco database. The
inserted datais stored in San Francisco as binary value 1998- 1- 23 3: 00: 00.

 Whenthe New Y ork client selects that inserted data from the San Francisco database, the value
displayed in New York is’ 1998- 1- 23 6: 00: 00’ .

* A San Francisco client, selecting the same data, seethevalue’ 1998- 1- 23 3: 00: 00’ .

Support for Daylight Savings Times

The Oracle Server automatically determines, for any given time zone region, whether daylight
savingsisin effect and returns local time values based accordingly. The datetime value is sufficient
for the server to determine whether daylight savingstimeisin effect for agiven region in al cases
except boundary cases. A boundary case occurs during the period when daylight savings goes into or
comes out of effect. For example, in the U.S.-Pacific region, when daylight savings comesinto effect,
the time changes from 2:00 a.m. to 3:00 am. The one hour interval between 2:00 a.m. and 3:00 am.
does not exist. When daylight savings goes out of effect, the time changes from 2:00 a.m. back to
1:00 am., and the one-hour interval between 1:00 am. and 2:00 am. is repeated.

Oracle9i aso significantly reduces the cost of devel oping and deploying applications globally on a
single database instance. Requirements for multi geographic applications include named time zones
and multilanguage support through Unicode. The datetime datatypes TSLTZ and TSTZ are
time-zone-aware. Datetime values can be specified aslocal timein a particular region (rather than a
particular offset). Using the time zone rules tables for a given region, the time zone offset for aloca
timeis caculated, taking into consideration daylight savings time adjustments, and used in further
operations.

This lesson addresses some of the new datetime functions introduced in Oracle9i.

Introduction to Oracle9i: SQL 16-5



TZ OFFSET

 Display the time zone offset for the time zone ' US/ East ern’

SELECT TZ_OFFSET(’ US/ Eastern’) FROM DUAL;

| TZ_OFFS
[04.00

* Display the time zone offset for the time zone ' Canada/ Yukon’

SELECT TZ_COFFSET(’ Canada/ Yukon’) FROM DUAL;

| TZ_OFFS
[-07:00

 Display the time zone offset for the time zone ' Eur ope/ London’

SELECT TZ_OFFSET(’ Eur ope/ London’) FROM DUAL,;

| TZ_OFFS
[+01:00

16-6 Copyright © Oracle Corporation, 2001. All rights reserved.

TZ_OFFSET

The TZ_OFFSET function returns the time zone offset corresponding to the value entered. The return
value is dependent on the date when the statement is executed. For exampleif the TZ_OFFSET
function returns a value -08:00, the return value can be interpreted as the time zone from where the
command was executed is eight hours after UTC. Y ou can enter avalid time zone name, atime zone
offset from UTC (which smply returnsitself), or the keyword SESSI ONTI MEZONE or

DBTI MEZONE. The syntax of the TZ_OFFSET functionis:

TZ_OFFSET ( ['time_zone_name’'] '[+ | -] hh:mm ]
[ SESSI ONTI MEZONE] [ DBTI MEZONE] )
The examplesin the dide can be interpreted as follows:
* Thetimezone’ US/ East ern’ isfour hours behind UTC
* Thetimezone’ Canada/ Yukon’ isseven hoursbehind UTC
* Thetimezone’ Eur ope/ London’ isone hour ahead of UTC

For alisting of valid time zone name values, query the V$TI MEZONE_NAMES dynamic performance
view.

DESC V$TI MEZONE_NAMES

| Hame | Null? | Type
TZMAME | WARCHARZ(54)
TZABBREY | WARCHARZ (54)

Introduction to Oracle9i: SQL 16-6




TZ _OFFSET (continued)
SELECT * FROM V$TI MEZONE_NAMES;

| TZNAME | TZABBREV
\AfricalCairo ILMT
\AfricalCairo [EET
\AfricalCairo [EEST
\AfricalTripol LT
\AfricadTripoli ICET
\AfricalTripol ICEST
\AfricadTripoli [EET
\AmericaiAdak LT
AmericaiAdak INST
\AmericaiAdak T
\ArmiericaliAdak BST
\AmericaiAdak BOT
\AmericaiAdak HAST
\AmericaiAdak HADT
| TZNAME | TZABBREV
|Americafﬁnchnrage |LMT
|Ameri|:afﬂmchnrage |CAT
|Ameriu:afAnu:hnrage |CA‘-I'-IT
|ﬁ~mericafﬁnchnrage |AHST
|Ameriu:afAnu:hnrage |AHDT
|Americafﬁnchnrage |»'-KKST
W-SU IMDST
-5 s
WS IMSD
-5 IMSK
S [EET
-5 [EEST
WYET WYEST
WVET WET

B16 rows selected.

Introduction to Oracle9i: SQL 16-7



CURRENT_DATE

« Display the current date and time in the session’s time zone .

ALTER SESSI ON
SET NLS_DATE_FORNMVAT = ' DD- MON- YYYY HH24: M : SS';

ALTER SESSI ON SET TIME_ZONE = '-5:0;
SELECT SESSI ONTI MEZONE, CURRENT_DATE FROM DUAL;

| SESSIONTIMEZONE | CURRENT_DATE
[os:00 [p3-0CT-2001 09:37 .06

ALTER SESSI ON SET TIME_ZONE = '-8:0;
SELECT SESSI ONTI MEZONE, CURRENT_DATE FROM DUAL;

| SESSIONTIMEZONE | CURRENT_DATE
[-os:00 [p3-0CT-2001 06:38.07

* CURRENT_DATE is sensitive to the session time zone.
» Thereturn value is a date in the Gregorian calendar.

16-8 Copyright © Oracle Corporation, 2001. All rights reserved.

CURRENT_DATE

The CURRENT _DATE function returns the current date in the session’ stime zone. The return valueis
adate in the Gregorian calendar.

The examplesin the dideillustrate that CURRENT _DATE is sensitive to the session time zone. In the
first example, the session is altered to set the Tl ME_ZONE parameter to —5:0. The TI ME_ZONE
parameter specifies the default local time zone displacement for the current SQL session.
TI ME_ZONE isasession parameter only, not an initialization parameter. The TI ME_ZONE
parameter is set as follows:

TIME ZONE = "[+ | -] hh:mm
The formatmask ([ + | -] hh: mm) indicates the hours and minutes before or after UTC
(Coordinated Universal Time, formerly known as Greenwich mean time).

Observein the output that the value of CURRENT _DATE changes whenthe TI ME_ZONE parameter
valueis changed to —8:0 in the second example.

Note: The ALTER SESSI ON command sets the date format of the session to
'DD- MON- YYYY HH24: M : SS' that is Day of month (1-31)-Abbreviated name of month-4-digit
year Hour of day (0-23):Minute (0-59):Second (0-59).
Instructor Note
Y ou might also want to select the SYSDATE for each TI ME_ZONE and draw the attention of the

students to the fact that SYSDATE remains the same irrespective of the changein the TI ME_ZONE.
SYSDATE is not sensitive to the session’ s time zone.

Introduction to Oracle9i: SQL 16-8




CURRENT_TI MESTAMP

 Display the current date and fractional time in the
session’s time zone.

ALTER SESSI ON SET TIME_ZONE = ' -5:0;

SELECT SESSI ONTI MEZONE, CURRENT_TI MESTAMP

FROM DUAL;

| SESSIONTIMEZONE | CURRENT_TIMESTAMP
|—DS:DD |03-OCT-01 09.40.59.000000 Ak -05:00

ALTER SESSI ON SET TIME_ZONE = '-8:0";
SELECT SESSI ONTI MEZONE, CURRENT_TI MESTAMP
FROM DUAL;

| SESSIONTIMEZONE | CURRENT_TIMESTAMP
|—DB:DD |DS-OCT—D‘I 06.41.358.000000 Ah -08:00

« CURRENT_TI MESTAMPis sensitive to the session time zone.
» Thereturn value is of the TI MESTAMP W TH Tl ME ZONE
datatype.

16-9 Copyright © Oracle Corporation, 2001. All rights reserved.

CURRENT_TI MESTAMP

The CURRENT _TI MESTANP function returns the current date and time in the session time zone, asa
value of the datatype TI| MESTAMP W TH TI ME ZONE. The time zone displacement reflects the
current local time of the SQL session. The syntax of the CURRENT _TI MESTAMP functionis:

CURRENT_TI MESTAMP ( preci sion)

where pr eci si on isan optiona argument that specifies the fractional second precision of thetime
value returned. If you omit precision, the default is 6.

The examplesin the dideillustrates that CURRENT _TI MESTAMP is sengitive to the session time
zone. In thefirst example, the session is atered to set the TI ME_ZONE parameter to —5:0. Observe
in the output that the value of CURRENT _TI MESTAMP changes when the TI ME_ZONE parameter
valueis changed to —8:0 in the second example.

Introduction to Oracle9i: SQL 16-9




LOCALTI MESTAMP

« Display the current date and time in the session time
zone in a value of TI MESTAMP data type.

ALTER SESSI ON SET TI ME_ZONE = ' -5:0;
SELECT CURRENT_TI MESTAWP, LOCALTI MESTAMP
FROM DUAL;

| CURRENT_TIMESTAMP | LOCALTIMESTAMP
03-0CT-01 0944 21 000000 AM -05-00 03-0CT-01 0944 21 00000 AM
ALTER SESSI ON SET TI ME_ZONE = '-8:0";
SELECT CURRENT_TI MESTAMP, LOCALTI MESTAMP
FROM DUAL,;

| CURRENT_TIMESTAMP | LOCALTIMESTAMP
03-0CT-01 05 45 21 000001 AM -05-00 03-0CT-01 D645 21 000001 AM

e LOCALTI MESTAMP returns a TI MESTAMP value, whereas
CURRENT _TI MESTANMP returns a TI MESTAMP W TH TI ME
ZONE value.

‘ 16-10 Copyright © Oracle Corporation, 2001. All rights reserved.

LOCALTI MESTAMP

The LOCALTI MESTANMP function returns the current date and time in the session time zonein a
value of datatype TI MESTANMP. The difference between this function and CURRENT _TI MESTAMP
isthat LOCALTI MESTANMP returnsa Tl MESTAMP value, while CURRENT _TI MESTAMP returns a
TI MESTAVP W TH Tl ME ZONE value. TI MESTAMP W TH TI ME ZONE isavariant of

Tl MESTAMP that includes atime zone displacement in its value. The time zone displacement is the
difference (in hours and minutes) between local timeand UTC. The TI MESTAMP W TH TI ME
ZONE data type has the following format:

TI MESTAMP [ (fractional _seconds_precision) ] WTH TI ME ZONE

wheref racti onal _seconds_pr eci si on optionaly specifies the number of digitsin the
fractional part of the SECOND datetime field and can be a number in the range 0 to 9. The default is 6.
For example, you specify TI MESTAMP W TH Tl ME ZONE as alitera asfollows:

TI MESTAMP " 1997-01- 31 09: 26: 56. 66 +02: 00’
The syntax of the LOCAL_TI MESTAMP functionis:
LOCAL_TI MESTAMP ( TI MESTAMP_pr eci si on)

Where, TI| MESTAMP_pr eci si on isan optiona argument that specifies the fractional second
precision of the TI MESTAMP value returned.

The examplesin the dideillustrates the difference between LOCALTI MESTAMP and
CURRENT_TI MESTAMP. Observe that the LOCALTI MESTAMP does not display the time zone
value, while the CURRENT _TI MESTAMP does.

Introduction to Oracle9i: SQL 16-10




DBTI MEZONE and SESSI ONTI MEZONE

« Display the value of the database time zone.

SELECT DBTI MEZONE FROM DUAL;

| DBTIME
[0s:00

« Display the value of the session’s time zone.

SELECT SESSI ONTI MEZONE FROM DUAL,;

| SESSIONTIMEZONE
[-08:00

‘ 16-11 Copyright © Oracle Corporation, 2001. All rights reserved.

DBTI MEZONE and SESSI ONTI MEZONE

The default database time zone is the same as the operating system’s time zone. Y ou set the database’s
default time zone by specifying the SET TI ME_ZONE clause of the CREATE DATABASE
statement. If omitted, the default database time zone is the operating system time zone. The database
time zone can be changed for asession with an ALTER SESSI ON statement.

The DBTI MEZONE function returns the value of the database time zone. The return typeisatime
zone offset (acharacter typeintheformat ' [ +| -] TZH: TZM ) or atime zone region name,
depending on how the user specified the database time zone value in the most recent CREATE
DATABASE or ALTER DATABASE statement. The example on the dide shows that the database time
zoneisset to UTC, asthe TI ME_ZONE parameter isin the format:

TIME_ZONE = '[+ | -] hh:nmm
The SESSI ONTI MEZONE function returns the value of the current session’ stime zone. The return
typeisatime zone offset (a character typeintheformat’ [ +| ] TZH: TZM ) or atime zone region

name, depending on how the user specified the session time zone value in the most recent ALTER
SESSI ON statement. The example in the dide shows that the session time zoneis set to UTC.

Observe that the database time zone is different from the current session’ s time zone.

Introduction to Oracle9i: SQL 16-11



EXTRACT
« Display the YEAR component from the SYSDATE.

SELECT EXTRACT ( YEAR FROM SYSDATE) FROM DUAL,

| EXTRACT(YEARFROMSYSDATE)
| 2001

* Display the MONTHcomponent from the H RE_DATE
for those employees whose MANAGER | Dis 100.

SELECT | ast _name, hire_date,

EXTRACT ( MONTH FROM HI RE_DATE)
FROM enpl oyees
WHERE manager _id = 100;

[ LAST_NAME [ HIRE_DATE | EXTRACT(MONTHFROMHIRE_DATE)

[Kochhar [21-SEP-89 | ]

[De Haan [13-Jan-93 | 1

[Mourgos [1B-MOv-93 | 1

[Tiotkey [29-Jan-00 | 1

[Hartstein [17-FEB-96 | 2
‘ 16-12 Copyright © Oracle Corporation, 2001. All rights reserved.

EXTRACT

The EXTRACT expression extracts and returns the value of a specified datetime field from a datetime
or interval value expression. Y ou can extract any of the components mentioned in the following
syntax using the EXTRACT function. The syntax of the EXTRACT function is:
SELECT EXTRACT ([ YEAR] [ MONTH] [ DAY] [ HOUR] [ M NUTE] [ SECOND]|
[ TI MEZONE_HOUR] [ TI MEZONE_M NUTE]
[ TI MEZONE_REGQ ON] [ TI MEZONE_ABBR]
FROM [datetinme_val ue_expression]
[interval val ue_expression]);

When you extract aTI MEZONE_REGQ ONor TI MEZONE_ABBR (abbreviation), the value returned is
a string containing the appropriate time zone name or abbreviation. When you extract any of the other
values, the value returned isin the Gregorian calendar. When extracting from a datetime with atime
zone value, the valuereturned isin UTC. For alisting of time zone names and their corresponding
abbreviations, query the V$TI MEZONE_NAMES dynamic performance view. In the first example on
the dide, the EXTRACT function is used to extract the YEAR from SYSDATE.

In the second example in the dide, the EXTRACT function is used to extract the MONTH from
HI RE_DATE column of the EMPLOYEES table, for those empl oyees who report to the manager
whose EMPLOYEE | Dis 100.

Instructor Note

The Oracle Server lets you derive datetime and interval value expressions. Datetime value
expressions yield values of datetime datatype. Interval value expressions yield values of interval data
type. For more information on these data types refer Oracle9i SQL Reference.

Introduction to Oracle9i: SQL 16-12



TI MESTAMP Conversion Using FROM TZ

* Display the TI MESTAMP value ' 2000- 03- 28 08: 00: 00’
as aTl MESTAMP W TH TI ME ZONE value.

SELECT FROM TZ( TI MESTAMP
' 2000-03-28 08:00: 00", 3:00")
FROM DUAL;

| FROM_TZ({TIMESTAMP 2000-03-2808:00:00","3:007)
|28-MAR-DD 05.00.00.000000000 Ak +13:00

* Display the TI MESTAMP value ' 2000- 03- 28 08: 00: 00’
as aTl MESTAMP W TH Tl ME ZONE value for the

time zone region 'Australia/North’
SELECT FROM TZ( TI MESTAMP

' 2000- 03-28 08:00: 00", ’Australia/North’)
FROM DUAL;

| FROM_TZ({TIMESTAMP2000-03-2808:00:00°, AUSTRALIA/NORTH"
|2E!-MAR-DD 05.00.00.000000000 Al AUSTRALIAMNORTH

‘ 16-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Tl MESTAMP Conversion Using FROM TZ

The FROM TZ function convertsa Tl MESTAMP valueto a TI MESTAMP W TH TI ME ZONE
value.

The syntax of the FROM_TZ function is as follows:

FROM TZ( TI MESTAMP tinestanp_val ue, tinme_zone_val ue)

wheret i me_zone_val ue isacharacter stringin theformat * TZH: TZM or acharacter
expression that returns a string in TZR (time zone region) with optional TZD format (TZD isan
abbreviated time zone string with daylight savings information.) TZR represents the time zone region
in datetime input strings. Examplesare’ Australia/ North’',’ UTC ,and’ Si ngapore’ .TZD
represents an abbreviated form of the time zone region with daylight savings information. Examples
are’ PST’ for US/Pecific standard timeand* PDT’ for US/Pacific daylight time. To see alisting of
valid values for the TZR and TZD format elements, query the VSTl MEZONE_NAMES dynamic
performance view.

The example in the dide convertsa TI MESTAMP valueto TI MESTAMP W TH Tl ME ZONE.

Introduction to Oracle9i: SQL 16-13



STRI NGTo TI MESTAMP Conversion Using
TO TI MESTAMP and TO_TI MESTAMP_TZ

» Display the character string ' 2000- 12-01 11: 00: 00’
as a TI MESTAMP value.

SELECT TO_TI MESTAWP (' 2000-12-01 11:00: 00’ ,
"YYYY-MM DD HH M : SS')

FROM DUAL;

| TO_TIMESTAMP('2000-12-0111:00:00°, YYYY-MM-DDHH:MI:S57)
|D1 -DEC-00 11.00.00.000000000 A

« Display the character string * 1999-12-01 11: 00: 00 -8: 00’
as aTl MESTAMP WTH TI ME ZONE value.
SELECT

TO_TI MESTAMP_TZ(’ 1999-12-01 11:00: 00 -8: 00",
"YYYY-MM DD HH: M : SS TZH: TZM )

FROM DUAL;

| TO_TIMESTAMP_TZ(*1999-12-0111:00:00-8:00°, YYYY-MM-DDHH:MI:SSTZH: TZM)
|D1-DEC-99 11.00.00.000000000 A -08:00

‘ 16-14 Copyright © Oracle Corporation, 2001. All rights reserved.

STRI NG To TI MESTAMP Conversion Using TO Tl MESTAMP and TO Tl MESTAMP_TZ
The TO_TI MESTAMP function converts a string of CHAR, VARCHAR2, NCHAR, or N\VARCHAR2
datatypeto avalue of TI MESTAMP datatype. The syntax of the TO_TI MESTAMP functionis:
TO TI MESTAMP (char,[fnt],[ nlsparam])
The optional f nt specifiesthe format of char . If you omit f nt , the string must be in the default
format of the TI MESTAMP datatype. The optional nl spar amspecifies the language in which
month and day names and abbreviations are returned. This argument can have this form:
"NLS_DATE LANGUAGE = | anguage’
If you omit nl spar ans, thisfunction uses the default date language for your session. The example
on the dide converts a character string to avalue of TI MESTAMP.
The TO_TI MESTAMP_TZ function converts a string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatypeto avalue of TI MESTAMP W TH Tl ME ZONE datatype. The syntax of the
TO Tl MESTAMP_TZ functionis:
TO TI MESTAMP_TZ (char,[fm],[ " nlsparani])
Theoptiona f mt specifiesthe format of char. If omitted, a string must be in the default format of the
TI MESTAMP W TH Tl ME ZONE datatype. The optional nl spar amhas the same purposein this
function asinthe TO_TI MESTAMP function. The example in the dide converts a character string to
avaueof TI MESTAMP W TH Tl ME ZONE.
Note: The TO_TI MESTAMP_TZ function does not convert character stringsto TI MESTAMP W TH
LOCAL TI ME ZONE.

Introduction to Oracle9i: SQL 16-14



Time Interval Conversion with
TO _YM NTERVAL

 Display a date that is one year two months after the
hire date for the employees working in the department
with the DEPARTMENT _I D 20

SELECT hire_date,
hire _date + TO YM NTERVAL(' 01-02’) AS
H RE_DATE_YM NI NTERVAL

FROM EMPLOYEES

WHERE departnent _id = 20;

| HIRE_DATE | HIRE_DATE_YMININTERV
[17-FEB-1996 00.00:00 [17-APR-1597 00:00.00
[17-AUG-1997 00:00:00 [17-0CT-1988 00.00:00

‘ 16-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Time Interval Conversion with TO_YM NTERVAL

The TO_YM NTERVAL function converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHARZ datatypetoan| NTERVAL YEAR TO MONTHdatatype. Thel NTERVAL YEAR

TO MONTH datatype stores aperiod of time using the YEAR and MONTH datetime fields. The format
of | NTERVAL YEAR TO MONTHisasfollows:

| NTERVAL YEAR [ (year _precision)] TO MONTH

whereyear _pr eci si on isthe number of digitsin the YEAR datetime field. The default value of
year _preci sionis2.
The syntax of the TO_YM NTERVAL functionis:

TO_YM NTERVAL (char)
where char isthe character string to be converted.

The example in the dide calculates a date that is one year two months after the hire date for the
employees working in the department 20 of the EMPLOYEES table.

A reverse calculation can aso be done using the TO_YM NTERVAL function. For example:
SELECT hire_date, hire date + TO YM NTERVAL('-02-04") AS
H RE_DATE_YM NTERVAL
FROM  enpl oyees WHERE department __id = 20;

Observe that the character string passed to the TO_YM NTERVAL function has a negative value. The
example returns a date that is two years and four months before the hire date for the employees
working in the department 20 of the EMPLOYEES table.

Introduction to Oracle9i: SQL 16-15



Summary

In this lesson, you should have learned how to use
the following functions:

e TZ OFFSET
e FROM TZ

e TO TI MESTAMWP

e TO TI MESTAMP TZ
e TO YM NTERVAL

e CURRENT_DATE

* CURRENT_TI MESTAMP
e LOCALTI MESTAMP

* DBTI MEZONE

* SESSI ONTI MEZONE

e EXTRACT

‘ 16-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary
This lesson addressed some of the new datetime functions introduced in Oracle9i.

Introduction to Oracle9i: SQL 16-16



Practice 16 Overview

This practice covers using the Oracle9i datetime
functions.

‘ 16-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 16 Overview

In this practice, you display time zone offsets, CURRENT _DATE, CURRENT _TI MESTANMP, and the
LOCALTI MESTANMP. Y ou also set time zones and use the EXTRACT function.

Instructor Note

1. If you have demonstrated the code example: ALTER SESSI ON SET NLS DATE FORMAT =

" DD- MON- YYYY HH24: M : SS' |, remember toissue ALTER SESSI ON SET
NLS DATE FORMAT = ' DD MON YYYY' before moving on to the next lesson.

2. You might want to mention that the results of the questions are based on a different date, and in
some cases they will not match the actual results that the students will get. Also, the time zone offset
of the various countries might differ based on daylight saving time.

Introduction to Oracle9i: SQL 16-17



Practice 16
1. Alter thesessionto setthe NLS DATE FORMAT to DD- MON- YYYY HH24: M : SS.
2. a. Write queriesto display the time zone offsets (TZ_OFFSET), for the following time zones.

— US/Pacific-New
| TZ OFFS
0700

— Sngapore
| TZ OFFS
|+08:00

— Egypt
| TZ_OFFS
+02:00

b. Alter the sessionto set the TI ME_ZONE parameter value to the time zone offset of

US/Pacific-New.
c. Display the CURRENT _DATE, CURRENT _TI MESTAMP, and LOCALTI MESTAMP for
this session.
Note: The output might be different based on the date when the command is
executed.
| CURBENT DATE | CURBENT TIMESTAMP | LOCALTIMESTAMP

|EI1-CICT-2EIEI1 13:40:54 |EI1-DCT—EI1 01.40.54.000001 Pr -07:00 |EI“I-CICT-EI1 01.40.54.000001 P

d. Alter the session to set the TI ME_ZONE parameter valueto the time zone offset of
Singapore.
e. Display the CURRENT _DATE, CURRENT_TI MESTAMP, and LOCALTI MESTAMP for

this session. Note: The output might be different based on the date when the command is
executed.

| CURRENT _DATE | CURBRENT _TIMESTAMP | LOCALTIMESTAMP
|EI2-DCT—2EIEI1 04:42:34 |EI2-CICT-EI1 04.42.34.000000 Ak +13:00 |EI2-CICT-EI1 04.4234.000000 A

Note: Observe in the preceding practice that CURRENT _DATE, CURRENT _TI MESTAMP, and
LOCALTI MESTANMP are all senditive to the session time zone.

3. Writeaquery to display the DBTI MEZONE and SESSI ONTI MEZONE.

| DBTIME | SESSIONTIMEZONE
-05:00 +08:00

Introduction to Oracle9i: SQL 16-18



Practice 16 (continued)

4. Writeaquery to extract the YEAR from HI RE_DATE column of the EMPLOYEES table for those
employees who work in department 80.

| LAST_NAME | EXTRACT(YEARFROMHIRE_DATE)

Zlatkey | 2000
iAbel | 1995
Taylor | 1998

5. Alter thesessionto settheNLS DATE FORMAT to DD- MON- YYYY.

Introduction to Oracle9i: SQL 16-19



Introduction to Oracle9i: SQL 16-20



Enhancements to the
GROUP BY Clause

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Schedule: Timing Topic
45 minutes Lecture
30 minutes Practice

75 minutes Totd




Objectives

After completing this lesson, you should be able
to do the following:

* Usethe ROLLUP operation to produce
subtotal values

®* Use the CUBE operation to produce cross-
tabulation values

* Use the GROUPI NGfunction to identify the row
values created by ROLLUP or CUBE

* Use GROUPI NG SETSto produce a single result set

17-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim
In thislesson you learn how to:
» Group datafor obtaining the following:
— Subtotal values by using the ROLLUP operator
— Cross-tabulation values by using the CUBE operator

» Usethe GROUPI NGfunction to identify the level of aggregation in the results set produced by a
RCLLUP or CUBE operator.

*  Use GROUPI NG SETS to produce asingle result set that is equivalent toa UNI ON ALL
approach.

Introduction to Oracle9i: SQL 17-2



Review of Group Functions

Group functions operate on sets of rows to give one
result per group.

SELECT [col um, ]| group_function(col um).
FROM tabl e
[ WHERE condi ti on]

[ GROUP BY gr oup_by_expr essi on] |
[ ORDER BY col um];

Example:

SELECT AV sal ary), STDDEV(sal ary),

COUNT( comm ssi on_pct), MAX( hi re_dat e)
FROM  enpl oyees
VWHERE job_ id LIKE ' SA% ;

17-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Group Functions

Y ou can usethe GROUP BY clause to divide the rowsin atable into groups. Y ou can then use the

group functions to return summary information for each group. Group functions can appear in select
listsand in ORDER BY and HAVI NG clauses. The Oracle Server applies the group functions to each
group of rows and returns a single result row for each group.

Types of Group Functions

Each of the group functions AVG, SUM MAX, M N, COUNT, STDDEV, and VARI ANCE accept one
argument. The functions AVG, SUM STDDEV, and VARI ANCE operate only on numeric values. MAX
and M N can operate on numeric, character, or date data values. COUNT returns the number of
nonnull rows for the given expression. The examplein the dide cal culates the average salary,
standard deviation on the salary, number of employees earning a commission and the maximum hire
date for those employees whose JOB_| D begins with SA.

Guiddinesfor Using Group Functions
» Thedatatypesfor the arguments can be CHAR, VARCHAR2, NUMBER, or DATE.

» All group functions except COUNT( *) ignore null values. To substitute a value for null values,
use the NVL function. COUNT returns either a number or zero.

» TheOracle Server implicitly sorts the results set in ascending order of the grouping columns
specified, when you use a GROUP BY clause. To override this default ordering, you can use
DESCin an ORDER BY clause.

Instructor Note
You can skip this dideif the students are aready familiar with these concepts.
Introduction to Oracle9i: SQL 17-3



Review of the GROUP BY Clause

Syntax:

SELECT [colum, ] group_function(colum).
FROM tabl e

[ WHERE condi tion]

[ GROUP BY group_by_expression]
[ ORDER BY col um] ;

Example:

SELECT departnent _id, job_id, SUMsalary),
COUNT( enmpl oyee_i d)
FROMVI enpl oyees
| GROUP BY departnent_id, job_id]|;

17-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Review of GROUP BY Clause
The exampleillustrated in the dide is evaluated by the Oracle Server asfollows:
e The SELECT clause specifies that the following columns are to be retrieved:
— Department ID and job ID columns from the EMPLOYEES table

— Thesum of al the salaries and the number of employeesin each group that you have
specified in the GROUP BY clause
« TheGROUP BY clause specifies how the rows should be grouped in the table. The total saary
and the number of employees are calculated for each job ID within each department. The rows
are grouped by department ID and then grouped by job within each department.

| DEPARTMENT ID |  JOB_ID | SUM(SALARY) | COUNT(EMPLOYEE ID)

| 10 |AD_ASST | 4400 | 1
| 20 [WK_MAN | 13000 | 1
| 20 (MK_REP | G000 | 1
| 50 |ST_CLERK | 11700 | 4
| 110 |AC_ACCOUNT | 300 | 1
| 110 |AC_MGR | 12000 | 1
| S4_REP | 7000 | 1

13 rows selected.
Introduction to Oracle9i: SQL 17-4




Review of the HAVI NG Clause

SELECT [colum,] group_function(colum)...
FROM tabl e
[ WHERE condi tion]

[ GROUP BY group by expression]

[ HAVI NG havi ng_expr essi on] |

[ ORDER BY col um];

are to be displayed.

limiting condition.

®* Use the HAVI NGclause to specify which groups

®* You further restrict the groups on the basis of a

17-5 Copyright © Oracle Corporation, 2001. All rights reserved.

The HAVI NG Clause

Groups are formed and group functions are calculated before the HAVI NG clauseis applied to the
groups. The HAVI NG clause can precede the GROUP BY clause, but it is recommended that you

placethe GROUP BY clause first because it ismorelogical.

The Oracle Server performs the following steps when you use the HAVI NG clause:

1. Groupsrows

2. Appliesthe group functions to the groups and displays the groups that match the criteriain

the HAVI NG clause

SELECT departnent _id, AVE sal ary)

FROM  enpl oyees
GROUP BY departnent_id
HAVI NG AVE sal ary) >9500;

| DEPARTMENT ID | AVG(SALARY)

| a0 | 10033.3333
| a0 | 193333333
| 110 | 10150

The exampl e displays department 1D and average salary for those departments whose average salary

is greater than $9,500.

Introduction to Oracle9i: SQL 17-5




GROUP BY with ROLLUP and
CUBE Operators

® Use ROLLUP or CUBE with GROUP BY to produce
superaggregate rows by cross-referencing
columns.

* RCLLUP grouping produces aresults set

containing the regular grouped rows and the
subtotal values.

e CUBE grouping produces aresults set containing
the rows from ROLLUP and cross-tabulation rows.

17-6 Copyright © Oracle Corporation, 2001. All rights reserved.

GROUP BY with the ROLLUP and CUBE Operators

Y ou specify ROLLUP and CUBE operatorsin the GROUP BY clause of aquery. ROLLUP grouping
produces aresults set containing the regular grouped rows and subtotal rows. The CUBE operation in
the GROUP BY clause groups the selected rows based on the values of al possible combinations of
expressions in the specification and returns a single row of summary information for each group. Y ou
can use the CUBE operator to produce cross-tabul ation rows.

Note: When working with ROLLUP and CUBE, make sure that the columns following the GROUP
BY clause have meaningful, rea-life relationships with each other; otherwise the operators return
irrelevant information.

The ROLLUP and CUBE operators are available only in Oracle8i and later releases.

Introduction to Oracle9i: SQL 17-6



ROLLUP Operator

SELECT [colum,] group_function(colum).
FROM tabl e

[ WHERE condi ti on]

[ GROUP BY [ ROLLUP] | gr oup_by_expr essi on]

[ HAVI NG avi ng_expr essi on] ;

[ ORDER BY col um];

* ROLLUPIs an extension to the GROUP BY clause.

®* Usethe ROLLUP operation to produce cumulative
aggregates, such as subtotals.

17-7 Copyright © Oracle Corporation, 2001. All rights reserved.

The ROLLUP Operator

The ROLLUP operator delivers aggregates and superaggregates for expressions within a GROUP BY
statement. The ROLLUP operator can be used by report writersto extract statistics and summary
information from results sets. The cumulative aggregates can be used in reports, charts, and graphs.

The ROLLUP operator creates groupings by moving in one direction, from right to left, along the list
of columns specified in the GROUP BY clause. It then applies the aggregate function to these
groupings.

Note: To produce subtotalsin n dimensions (that is, n columnsin the GROUP BY clause) without a
ROLLUP operator, n+1 SELECT statements must be linked with UNI ON ALL. This makes the query
execution inefficient, because each of the SELECT statements causes table access. The ROLLUP
operator gathersits results with just one table access. The ROLLUP operator is useful if there are
many columns involved in producing the subtotals.

Introduction to Oracle9i: SQL 17-7



ROLLUP Operator Example

SELECT departnent _id, job_id, SUMsalary)
FROM enpl oyees

WHERE departnent _id < 60

GROUP BY ROLLUP(departnent _id, job_id)}

| DEPARTMENT ID | JOB_ID | SUM{SALARY)
[ | 10 |AD ASST 4400
| 10 4400 || €——
@ > T AR AN TS0
20 [MK_REP &000 @
| 20 19000 | €—
S B0 |ST_CLERK 11700
| 50 |[ST_MAN 5800
| 50 17500 || €
| \ | 40900 (_@
9 rows selected.
17-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of a ROLLUP Operator
In the example in the dide:

» Total saariesfor every job ID within adepartment for those departments whose department ID is
less than 60 are displayed by the GROUP BY clause (labeled 1)

e The ROLLUP operator displays.
— Tota saary for those departments whaose department 1D islessthan 60 (labeled 2)
— Tota sdary for all departments whose department 1D isless than 60, irrespective of the job
IDs (labeled 3)
» All rowsindicated as 1 are regular rows and al rowsindicated as 2 and 3 are superaggregate rows.

The ROLLUP operator creates subtotals that roll up from the most detailed level to a grand total,
following the grouping list specified inthe GROUP BY clause. First it calculates the standard aggregate
values for the groups specified in the GROUP BY clause (in the example, the sum of salaries grouped on
each job within a department). Then it creates progressively higher-level subtotals, moving from right to
left through the list of grouping columns. (In the preceding example, the sum of salaries for each
department is calculated, followed by the sum of salaries for al departments.)

» Given n expressionsin the ROLLUP operator of the GROUP BY clause, the operation resultsin
n+1=2+1=3groupings.

* Rows based on the values of the first n expressions are called rows or regular rows and the others
are called superaggregate rows.

Introduction to Oracle9i: SQL 17-8



CUBE Operator

SELECT [colum,] group_function(colum)...
FROM tabl e

[ WHERE condi tion]

[ GROUP BY [[CUBE] ] gr oup_by_expr essi on]

[ HAVI NG havi ng_expr essi on]

[ ORDER BY col um];

* CUBE s an extension to the GROUP BY clause.

®* You can use the CUBE operator to produce cross-
tabulation values with a single SELECT statement.

17-9 Copyright © Oracle Corporation, 2001. All rights reserved.

The CUBE Operator

The CUBE operator is an additional switch inthe GROUP BY clausein a SELECT statement. The
CUBE operator can be applied to all aggregate functions, including AVG SUM MAX, M N, and
COUNT. It is used to produce results sets that are typically used for cross-tabular reports. While
ROLLUP produces only afraction of possible subtotal combinations, CUBE produces subtotals for all
possible combinations of groupings specified in the GROUP BY clause, and a grand total.

The CUBE operator is used with an aggregate function to generate additional rowsin aresults set.
Columnsincluded in the GROUP BY clause are cross-referenced to produce a superset of groups. The
aggregate function specified in the select list is applied to these groups to produce summary values for
the additional superaggregate rows. The number of extra groupsin the results set is determined by the
number of columnsincluded inthe GROUP BY clause.

In fact, every possible combination of the columns or expressionsin the GROUP BY clauseis used to
produce superaggregates. If you have n columns or expressions in the GROUP BY clause, there will
be 2n possible superaggregate combinations. Mathematically, these combinations form an
n-dimensional cube, which is how the operator got its name.

By using application or programming tools, these superaggregate val ues can then be fed into charts
and graphsthat convey results and relationships visually and effectively.

Introduction to Oracle9i: SQL 17-9



CUBE Operator: Example

SELECT departnent _id, job_id, SUMsalary)
FROM enpl oyees

V\HERE departnent id < 60

[GROUP BY CUBE (departnent _id, job_id)|;

| DEPARTMENT ID | JOB_ID | SUM{SALARY)
3 I 10 [ AD_ASST 4400
|I 10 4400| <«
| 20 MK_MAN | T3000
@ > 20 [MK_REP | 5000
| 20 || [ 19000 (—@
I 50 [ST_CLERK | 11700
—>| 50 [ST_MAN 5800
| &0 17500 || €—
BD_ASET | a0
MK _MAN | 13000
@ IMK_REP | 000
—> [ST_CLERK | 11700
[ST_MAN | 5800
\ |

10900 (_@
14 rows selected.

17-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of a CUBE Operator
The output of the SELECT statement in the example can be interpreted as follows:

e Thetota sdary for every job within a department (for those departments whaose department 1D
islessthan 60) is displayed by the GROUP BY clause (Iabeled 1)

e Thetota sdary for those departments whose department ID isless than 60 (labeled 2)
e Thetota sdary for every job irrespective of the department (labeled 3)

» Tota saary for those departments whose department ID is less than 60, irrespective of the job
titles (labeled 4)

In the preceding example, all rowsindicated as 1 are regular rows, all rowsindicated as 2 and 4 are
superaggregate rows, and all rowsindicated as 3 are cross-tabulation values.

The CUBE operator has aso performed the ROLLUP operation to display the subtotals for those
departments whose department 1D isless than 60 and the total salary for those departments whose
department ID islessthan 60, irrespective of the job titles. Additionally, the CUBE operator displays
the total salary for every job irrespective of the department.

Note: Similar to the ROLLUP operator, producing subtotalsin n dimensions (that is, n columnsin the
GROUP BY clause) without a CUBE operator requires 2" SELECT statements to be linked with

UNI ON ALL. Thus, areport with three dimensions requires 28 = 8 SELECT statements to be linked
with UNI ON ALL.

Introduction to Oracle9i: SQL 17-10




GROUPI NG Function

SELECT [colum,] group_function(colum) . ,
| GROUPI NG( expr)|
FROM tabl e

[ WHERE condi tion]

[ GROUP BY [ ROLLUP] [ CUBE] group_by_expression]
[ HAVING  havi ng_expr essi on]

[ ORDER BY col um];

* The GROUPI NGfunction can be used with either the
CUBE or ROLLUP operator.

®* Using the GROUPI NGfunction, you can find the
groups forming the subtotal in a row.

* Using the GROUPI NGfunction, you can differentiate
stored NULL values from NULL values created by
ROLLUP or CUBE.

* The GROUPI NGfunction returns O or 1.

17-11 Copyright © Oracle Corporation, 2001. All rights reserved.

The GROUPI NG Function

The GROUPI NGfunction can be used with either the CUBE or ROLLUP operator to help you understand
how a summary value has been obtained.

The GROUPI NGfunction uses asingle column asits argument. The expr inthe GROUPI NG function
must match one of the expressionsin the GROUP BY clause. The function returns a value of 0 or 1.

The values returned by the GROUPI NG function are useful to:

» Determinethelevel of aggregation of agiven subtotal; that is, the group or groups on which the
subtotal is based

* ldentify whether aNULL valuein the expression column of arow of the result set indicates:
— A NULL value from the base table (stored NULL value)
— A NULL value created by ROLLUP/CUBE (as aresult of agroup function on that expression)
A value of 0 returned by the GROUPI NG function based on an expression indicates one of the following:
» Theexpression has been used to calculate the aggregate val ue.
e TheNULL valuein the expression column is a stored NULL value.
A value of 1 returned by the GROUPI NG function based on an expression indicates one of the following:
» Theexpression has not been used to calculate the aggregate vaue.
* TheNULL valuein the expression column is created by ROLLUP or CUBE as aresult of grouping.

Introduction to Oracle9i: SQL 17-11



GROUPI NG Function: Example

SELECT departnent _id DEPTID, job_id JOB,
SUM sal ary),

GROUPI NE department _id) GRP_DEPT,
GROUPI NG j ob_id) GRP_JOB

FROM enpl oyees

VWHERE departnent _id < 50

GROUP BY ROLLUP(departnment _id, job_id);

DEPTID | JoB SUM{SALARY) | GRP_DEPT | GRP_JOB
10 [AD_ASST 4400 || o
10 4400 || o

| |
| |
| |
| 20 [MK_MAN | 13000 || o
| |
| |
| |

(L)—

20 MK_REP 6000 | o
20 19000 || o
| 23400 || 1]

B rows selected.

| ool =|o

—2
—®

17-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of a GROUPI NG Function

In the example in the dide, consider the summary value 4400 in the first row (labeled 1). This
summary valueisthetotal salary for the job ID of AD_ASST within department 10. To calculate this
summary value, both the columns DEPARTMENT _I Dand JOB_I D have been taken into account.
Thus avalue of Qisreturned for both the expressions GROUPI NG depar t ment _i d) and

GROUPI NG j ob_i d) .

Consider the summary value 4400 in the second row (labeled 2). Thisvalueisthetotal salary for
department 10 and has been cal culated by taking into account the column DEPARTMENT | D; thusa
value of 0 has been returned by GROUPI NG depart nent _i d) . Becausethe column JOB_| D has

not been taken into account to calculate this value, avalue of 1 has been returned for
GROUPI NG j ob_i d) . You can observe similar output in the fifth row.

In the last row, consider the summary value 23400 (labeled 3). Thisisthe total salary for those
departments whose department ID isless than 50 and all job titles. To calculate this summary value,
neither of the columns DEPARTVENT _| Dand JOB_| D have been taken into account. Thus avalue
of 1isreturned for both the expressions GROUPI N& depart nment _i d) and
GROUPI NG j ob_i d).

Instructor Note

Explain that if the same exampleis run with the CUBE operator, it returns aresults set that has 1 for
GROUPI NG depart ment _i d) and 0 for GROUPI NG j ob_i d) inthe cross-tabulation rows,
because the subtotal values are the result of grouping on job irrespective of department number.

Introduction to Oracle9i: SQL 17-12




GROUPI NG SETS

®* GROUPI NG SETS are a further extension of the
GROUP BY clause.

®* You can use GROUPI NG SETS to define multiple
groupings in the same query.

®* The Oracle Server computes all groupings specified
in the GROUPI NG SETS clause and combines the
results of individual groupings with a UNI ON ALL
operation.

®* Grouping set efficiency:
— Only one pass over the base table is required.
— Thereis no need to write complex UNI ON statements.

— The more elements the GROUPI NG SETS have, the
greater the performance benefit.

17-13 Copyright © Oracle Corporation, 2001. All rights reserved.

GROUPI NG SETS

GROUPI NG SETS are afurther extension of the GROUP BY clause that let you specify multiple
groupings of data. Doing so facilitates efficient aggregation and hence facilitates analysis of data
across multiple dimensions.

A single SELECT statement can now be written using GROUPI NG SETS to specify various
groupings (that can aso include ROLLUP or CUBE operators), rather than multiple SELECT
statements combined by UNI ON ALL operators. For example, you can say:

SELECT departnent _id, job_id, manager_id, AV sal ary)

FROM enpl oyees

GROUP BY GROUPI NG SETS

((departnment id, job_id, manager _id),

(departnent _id, manager_id), (job_id, manager_id));

This statement cal cul ates aggregates over three groupings:
(departnment _id, job id, nmanager _id), (departnent_id, manager _id)
and (job_id, nanager id)

Without this enhancement in Oracle9i, multiple queries combined together with UNI ON ALL are
required to get the output of the preceding SELECT statement. A multiquery approach is inefficient,
for it requires multiple scans of the same data.

Introduction to Oracle9i: SQL 17-13



GROUPI NG SETS (continued)
Compare the preceding statement with this alternative:

SELECT departnent _id, job_ id, manager _id, AV sal ary)
FROM enpl oyees
GROUP BY CUBE(departnent _id, job_id, manager_id);

The preceding statement computes all the 8 (2 *2 * 2) groupings, though only the groups

(departnent _id, job_id, manager _id), (departnent_id, manager_id) and

(job_id, manager i d) areof interest to you.
Another dternative isthe following statement:
SELECT departnent_id, job_id, manager_id, AVEsal ary)

FROM enpl oyees

GROUP BY departnent _id, job id, manager _id

UNI ON ALL

SELECT departnent _id, NULL, manager_id, AV sal ary)
FROM enpl oyees

GROUP BY departnent _id, nmanager _id

UNI ON ALL

SELECT NULL, job_id, manager _id, AVE sal ary)

FROM enpl oyees

GROUP BY job_id, manager _id;
This statement requires three scans of the base table, making it inefficient.

CUBE and ROLLUP can be thought of as grouping sets with very specific semantics. The following

equivalencies show this fact:
CUBE(a, b, c) GROUPI NG SETS
is equivalent to ((a, b, ¢c), (a, b), (a, c), (b, c),

(a), (b), (c), ())

ROLLUP(a, b, c) GROUPI NG SETS ((a, b, ¢), (a, b),(a), ())
is equivaent to

Introduction to Oracle9i: SQL 17-14



GROUPI NG SETS: Example

SELECT departnent _id, job_ id,
manager _i d, avg(sal ary)
FROM enpl oyees
GROUP BY |GROUPI NG SETS|
((departnent __id,job_id), (job_id, manager_id));

| DEPARTMENT 1D | JOB_ID | MANAGER_ID | AVG({SALARY)

| 10 [AD_ASST | | 4400

| 20 |[MK_MAN | | 13000 (_@
| 20 |[MK_REP | | 6000

| 50 [ST CLERK | | 2975

I T [So_TA | 00 | o500

| [sA_REP | 143 || 5965 65567

| [5T_CLERK | 124 2925 @
| [ST_MAN | 100 | 5500

26 rows selected.

17-15 Copyright © Oracle Corporation, 2001. All rights reserved.

GROUPI NG SETS: Example

The query in the dide calcul ates aggregates over two groupings. Thetable is divided into the
following groups:

*  Department ID, Job ID
. Job ID, Manager ID

The average salaries for each of these groups are calculated. The results set displays average saary
for each of the two groups.

In the output, the group marked as 1 can be interpreted as:
* Theaverage sdary of al employeeswiththejob ID AD_ASST in the department 10 is 4400.
» Theaverage salary of all employees with the job ID MK_MAN in the department 20 is 13000.
» Theaverage salary of all employees with the job ID MK_REP in the department 20 is 6000.

» Theaverage sdary of al employeeswiththejob ID ST_CLERK in the department 50 is 2925
and so on.

Introduction to Oracle9i: SQL 17-15




GROUPI NG SETS: Example (continued)
The group marked as 2 in the output isinterpreted as:

» Theaverage sdary of al employeeswith thejob ID MK_REP, who report to the manager with

the manager 1D 201, is 6000.

» Theaverage sdary of al employeeswiththejob ID SA_ MAN, who report to the manager with

the manager 1D 100, is 10500, and so on.

The examplein the dide can a so be written as:
SELECT departnent _id, job_id, NULL as nanager _id,
AVE sal ary) as AVGSAL

FROM enpl oyees

GROUP BY departnent _id, job_ id

UNI ON ALL

SELECT  NULL, job_id, manager_id, avg(salary) as AVGSAL
FROM enpl oyees

GROUP BY job_id, manager i d;
In the absence of an optimizer that |ooks across query blocks to generate the execution plan, the

preceding query would need two scans of the base table, EMPLOYEES. This could be very inefficient.

Hence the usage of the GROUPI NG SETS statement is recommended.

Introduction to Oracle9i: SQL 17-16



Composite Columns

® A composite column is a collection of columns
that are treated as a unit.

ROLLWP (a, [, C)] o

®* To specify composite columns, use the GROUP BY
clause to group columns within parentheses so

that the Oracle server treats them as a unit while
computing ROLLUP or CUBE operations.

* When used with ROLLUP or CUBE, composite

columns would mean skipping aggregation across
certain levels.

17-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Composite Columns

A composite column isacollection of columns that are treated as a unit during the computation of
groupings. Y ou specify the columnsin parentheses as in the following statement:

ROLLUP (a, (b, c), d)

Here, (b, ¢) form acomposite column and are treated as a unit. In general, composite columns are
useful in ROLLUP, CUBE, and GROUPI NG SETS. For example, in CUBE or ROLLUP, composite
columns would mean skipping aggregation across certain levels.

That is, GROUP BY ROLLUP(a, (b, c))

is equivaent to
GROUP BY a, b, ¢ UNION ALL
GROUP BY a UNI ON ALL
GROUP BY ()

Here, (b, c¢) aretreated asaunit and rollup will not be applied across( b, c) . Itisasif you have
an dlias, for example z, for (b, c¢), and the GROUP BY expression reducesto
GROUP BY ROLLUP(a, z).
Note: GROUP BY( ) istypically a SELECT statement with NULL values for the columnsaand b
and only the aggregate function. Thisis generaly used for generating the grand totals.

SELECT  NULL, NULL, aggregate_col

FROM <t abl e_nane>

GROUP BY ( );

Introduction to Oracle9i: SQL 17-17




Composite Columns (continued)
Compare thiswith the normal ROLLUP asin:
GROUP BY ROLLUP(a, b, c¢)

which would be
GROUP BY a, b, ¢ UNION ALL
GROUP BY a, b UNION ALL
GROUP BY a UNI ON ALL
GROUP BY ().

Similarly,
GROUP BY CUBE((a, b), c)
would be equivalent to
GROUP BY a, b, ¢ UNION ALL
GROUP BY a, b UNION ALL

GROUP BY ¢ UNION ALL
GROUP By ()

The following table shows grouping sets specification and equivalent GROUP BY specification.

GROUPI NG SETS Statements

Equivalent GROUP BY Statements

GROUP BY GROUPI NG SETS(a, b, c) GROUP BY a UNI ON ALL
GROUP BY b UNI ON ALL
GROUP BY c

GROUP BY GROUPI NG SETS(a, b, (b, c)) GROUP BY a UNI ON ALL

(The GROUPI NG SETS expression hasacomposite | GROUP BY b UNI ON ALL

column) GROUP BY b, c

GROUP BY GROUPI NG SETS((a, b, c¢)) GROUP BY a, b, c

GROUP BY GROUPI NG SETS(a, (b), ())

GROUP BY a UNI ON ALL
GROUP BY b UNI ON ALL
GROUP BY ()

GROUP BY GROUPI NG SETS

(a, ROLLUP(b, c))

(The GROUPI NG SETS expression has a composite
column)

GROUP BY a UNI ON ALL
GROUP BY ROLLUP(b, c¢)

Introduction to Oracle9i: SQL 17-18




Composite Columns: Example

SELECT departnent _id, job_id, manager _id,
SUM sal ary)
FROMVI enpl oyees
| GROUP BY ROLLUP( departnent_id, (job_id, manager _id))];

DEPARTMENT_ID | JOB_ID
10 [AD_ASST

|
|
| 10]]

@ | 20 [MK_MAN
| 20 MK_REP
|
|
|

MANAGER_ID | SUM(SALARY)
101 || 4400
| 4400
100 || 13000 @
201 || 6000

| 19000
124 || 11700

| 175500 |(-@

20
50 |ST_CLERK

23 rows selected.

17-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Composite Columns: Example
Consider the example:
SELECT departnent _id, job_ id, mnager _id, SUMsalary)
FROM  enpl oyees
GROUP BY ROLLUP( departnent _id,job_id, manager id);
The preceding query resultsin the Oracle Server computing the following groupings:
1. (department _id, job_id, manager _id)
2. (departnent _id, job_id)
3. (departnent _id)

4. ()
If you are just interested in grouping of lines (1), (3), and (4) in the preceding example, you cannot
limit the calculation to those groupings without using composite columns. With composite columns,
thisis possible by treating JOB_| D and MANAGER | D columns as asingle unit while rolling up.
Columns enclosed in parentheses are treated as a unit while computing ROLLUP and CUBE. Thisis
illustrated in the example on the dide. By enclosing JOB_I D and MANAGER_| D columnsin
parenthesis, we indicate to the Oracle Server to treat JOB_| Dand MANAGER_| Dasasingle unit, asa
composite column.

Introduction to Oracle9i: SQL 17-19



Composite Columns: Example (continued)

The example in the dide computes the following groupings:
— (departnent _id, job_id, manager _id)
— (departnent _id)
- ()

The examplein the dlide displays the following:
— Tota salary for every department (labeled 1)
— Totd salary for every department, job 1D, and manager (labeled 2)
— Grand total (Iabeled 3)

The example in the dide can aso be written as:
SELECT departnent_id, job_id, manager_id, SUM sal ary)
FROM enpl oyees
GROUP BY departnent _id,job_id, manager_id
UNION ALL
SELECT departnment _id, TO CHAR(NULL), TO NUMBER(NULL), SUM sal ary)
FROM enpl oyees
GROUP BY departnment _id
UNI ON ALL
SELECT  TO _NUMBER(NULL), TO CHAR(NULL), TO NUMBER(NULL), SUM sal ary)
FROM enpl oyees
GROUP BY ();

In the absence of an optimizer that looks across query blocks to generate the execution plan, the
preceding query would need three scans of the base table, EMPLOYEES. This could be very inefficient.

Hence, the use of composite columns is recommended.

Introduction to Oracle9i: SQL 17-20



Concatenated Groupings

e Concatenated groupings offer a concise way to
generate useful combinations of groupings.

®* To specify concatenated grouping sets, you
separate multiple grouping sets, ROLLUP, and
CUBE operations with commas so that the Oracle
Server combines them into a single GROUP BY
clause.

®* Theresultis across-product of groupings from
each grouping set.

GROUP BY GROUPI NG SETS(a, b), GROUPING SETS(c, d)

17-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Concatenated Columns
Concatenated groupings offer a concise way to generate useful combinations of groupings. The
concatenated groupings are specified smply by listing multiple grouping sets, cubes, and rollups, and
separating them with commas. Here is an example of concatenated grouping sets.
GROUP BY GROUPI NG SETS(a, b), GROUPI NG SETS(c, d)
The preceding SQL defines the following groupings:
(a, ¢), (a, d), (b, ¢), (b, d)
Concatenation of grouping setsis very helpful for these reasons:
» Ease of query development: you need not manually enumerate all groupings

» Useby applications: SQL generated by OLAP applications often involves concatenation of
grouping sets, with each grouping set defining groupings needed for a dimension

Introduction to Oracle9i: SQL 17-21



Concatenated Groupings Example

SELECT departnent _id, job_id, manager _id,
SUM sal ary)

FROM enpl oyees

GROUP BY departnent _id,
ROLLUP(j ob_i d),
CUBE( manager _i d)}

| DEPARTMENT ID | JOB ID | MANAGER_ID | SUM(SALARY)
@—1} 10 [AD_ASST | 101 || 4400
| 20 [MK_ManN | 100 || 13000
@—1—) 10| | 101 | 4400
|

| 20 |
@—-{} 10 [aD_ASST | | 4400
10| | | 4400
| [5A_REP | | 7000
| | | | 7000

49 rows selected.

‘ 17-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Concatenated Groupings Example
The examplein the dide resultsin the following groupings:
e (departrment _id, nanager _id, job id)

100 || 13000

e (departnent _id, nmanager _id)
e (departnent_id, job_id)
* (departnent _id)
Thetotal salary for each of these groupsis calculated.
The example in the dide displays the following:
» Tota saary for every department, job ID, manager
o Tota saary for every department, manager ID
o Total saary for every department, job ID
» Total saary for every department
For easier understanding, the details for the department 10 are highlighted in the output.

Introduction to Oracle9i: SQL 17-22



In this lesson, you should have learned how to:

Summary

Use the ROLLUP operation to produce
subtotal values

Use the CUBE operation to produce cross-tabulation
values

Use the GROUPI NGfunction to identify the row values
created by ROLLUP or CUBE

Use the GROUPI NG SETS syntax to define multiple
groupings in the same query

Use the GROUP BY clause, to combine expressions in
various ways:

— Composite columns

— Concatenated grouping sets

‘ 17-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary
ROLLUP and CUBE are extensions of the GROUP BY clause.
RCOLLUP is used to display subtotal and grand total values.
CUBE is used to display cross-tabulation val ues.

The GROUPI NG function helps you determine whether arow is an aggregate produced by a
CUBE or ROLLUP operator.

With the GROUPI NG SETS syntax, you can define multiple groupings in the same query.
GROUP BY computes all the groupings specified and combines them with UNI ON ALL.

Within the GROUP BY clause, you can combine expressionsin various ways:

To specify composite columns, you group columns within parentheses so that the Oracle
Server treats them as a unit while computing ROLLUP or CUBE operations.

To specify concatenated grouping sets, you separate multiple grouping sets, ROLLUP,
and CUBE operations with commas so that the Oracle Server combines them into a
single GROUP BY clause. Theresult is a cross-product of groupings from each grouping
Set.

Introduction to Oracle9i: SQL 17-23



Practice 17 Overview

This practice covers the following topics:
® Using the ROLLUP operator

®* Using the CUBE operator

®* Using the GROUPI NGfunction

* Using GROUPI NG SETS

‘ 17-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 17 Overview

In this practice, you use the ROLLUP and CUBE operators as extensions of the GROUP BY clause.
You will alsouse GROUPI NG SETS.

Introduction to Oracle9i: SQL 17-24




Practice 17
1. Write aquery to display the following for those employees whose manager ID isless than 120:
*  Manager ID
e Job ID and total salary for every job ID for employees who report to the same manager
e Total saary of those managers
e Total saary of those managers, irrespective of thejob IDs

| MANAGER_ID | JOB_ID | SUM{SALARY)

| 100 |AD_WP | 34000
| 100 [MK_MAN | 13000
| 100 [SA_MAN | 10500
| 100 ||[ST_MAN | 5800
| 100 | | G3300
| 101 |AC_MGR | 12000
| 101 |AD_ASST | 4400
| 101 | | 16400
| 102 |IT_PROG | 5000
| 102 | | 9000
| 103 |IT_PROG | 10200
| 103 | | 10200
| | | 9A500

13 rows selected.

Introduction to Oracle9i: SQL 17-25



Practice 17 (continued)

2. Observethe output from question 1. Write a query using the GROUPI NG function to determine
whether the NULL valuesin the columns corresponding to the GROUP BY expressions are

caused by the ROLLUP operation.

IMGR | JOB  |SUM(SALARY) | GROUPING{MANAGER ID} | GROUPING{JOB_ID)
| 100 AD WP | 34000 | 0| 0
| 100 MK_MAN | 13000 | 0| 0
| 100 |SA_MAN | 10500 | 0| 0
| 100 |ST_MAN | 5800 | 0| 0
| 100 | | G3300 | 0| 1
| 101 |AC_MGR | 12000 | 0| 0
| 101 |AD_ASST | 4400 | 0| 0
| 101 | | 16400 | 0| 1
| 102 IT_PROG | o000 | 0| 0
| 102 | | 9000 | 0| 1
| 103 IT_PROG | 10200 | 0| 0
| 103 | | 10200 | 0| 1
| | | 98500 | 1| 1

13 rows selected.

Introduction to Oracle9i: SQL 17-26



Practice 17 (continued)
3. Writeaquery to display the following for those employees whose manager 1D islessthan 120:
* Manager ID
» Job and total salariesfor every job for employees who report to the same manager
» Tota sdary of those managers

» Cross-tabulation values to display the total salary for every job, irrespective of the
manager

o Tota saary irrespective of al job titles

| MAMAGER_ID | JOB_ID | SUM{SALARY)

| 100 |AD_WP | 34000
| 100 [MK_PAN | 13000
| 100 |SA_MAN | 10500
| 100 ||ST_MAN | 5800
| 100 | | (3300
| 101 |AC_MGR | 12000
| 101 |AD_ASST | 4400
| 101 | | 16400
| 102 |IT_PROG | 9000
| 102 | | 3000
| 103 |IT_PROG | 10200
| 103 | | 10200
| \AC_MGR | 12000
| \AD_ASST | 4400
| MANAGER_ID | JOB_ID | SUM(SALARY)

| \AD_P | 34000
| IT_PROG | 13200
| IMK_MAN | 13000
| |SA,_MAN | 10500
| |ST_MAN | 5800
| | | 5E500

20 rows selected.

Introduction to Oracle9i: SQL 17-27



Practice 17 (continued)

4. Observe the output from question 3. Write a query using the GROUPI NGfunction to
determine whether the NULL valuesin the columns corresponding to the GROUP BY
expressions are caused by the CUBE operation.

IMGR | JOB  |SUM(SALARY) | GROUPING(MANAGER ID) | GROUPING{JOB_ID)
| 100 |AD WP | 34000 | 0| 0
| 100 MK_MAN | 13000 | 0| 0
| 100 |SA_MAN | 10500 | 0| 0
| 100 (ST _MAN | 5800 | 0| 0
| 100 | | E3300 | 0| 1
|01 AC_MGR | 12000 | 0| 0
| 101 |AD_ASST | 4400 | 0| 0
|01 | | 16400 | 0| 1
| 102 IT_PROG | 9000 | 0| 0
| 102 | | 9000 | 0| 1
| 103 IT_PROG | 10200 | 0| 0
| 103 | | 10200 | 0| 1
| AC_MGR | 12000 | 1| 0
| AD_ASST | 4400 | 1 0
IMGR | JOB  |SUM(SALARY) | GROUPING(MANAGER ID) | GROUPING{JOB_ID)
| wo_vP | 34000 | 1 0
| IT_PROG | 19200 | 1| 0
| IMK_MAN | 13000 | 1 0
| ISA_MAN | 10500 | 1| 0
| IST_MAN | 5800 | 1| 0
| | | 98500 | 1| 1

20 rows selected.

Introduction to Oracle9i: SQL 17-28




Practice 17 (continued)

5. Using GROUPI NG SETS, write a query to display the following groupings :

e departnent _id, manager _id,
e departnent_id, job_id
e manager _id, job_id

The query should calculate the sum of the salaries for each of these groups.

job_id

| DEPARTMENT ID | MANAGER ID | JOB_ID |  SUM(SALARY)

| 10 | 101 |AD_ASST | 4400
| 20 | 100 [MK_MAN | 13000
| 20 | 201 |MK_REP | BO00
| 50 | 124 |ST_CLERK | 11700
| 50 | 100 |ST_MAN | 5800
| B0 | 102 |IT_PROG | 5000
| B0 | 103 IT_PROG | 10200
| a0 | 100 |[SA_MAN | 10500
| a0 | 143 |SA_REP | 19600
| o0 | AD_PRES | 24000
| a0 | 100 | |AD_WP | 34000
| 110 | 205 |AC_ACCOUNT | A300
| 10 | 101 |AC_MGR | 12000
| | 143 |SA_REP | 7000
| | 100 |[MK_MAN | 13000
| | 100 ||SA_MAN | 10500
| | 100 [ST_MAN | 5800
| | 101 |AC_MGR | 12000
| | 101 |AD_ASST | 4400
| | 102 IT_PROG | 9000
| | 103 |IT_PROG | 10200
| | 124 |ST_CLERK | 11700
| | 143 |SA_REP | 26600
| | 201 |MK_REP | B000
| | 208 |AC_ACCOUNT | A300
| | \AD_PRES | 24000

A0 rows selected.

Introduction to Oracle9i: SQL 17-29




Instructor Note

Analytical Functions

Oracle8i, release 2 (8.1.6) introduces a set of analytical group functions that provide the use of
flexible and powerful calculation expressions. These analytical functions eliminate complex
programming outside of standard SQL for calculations such as moving averages, rankings, and lead
and lag comparisons.

In Oracle8i, release 2, each group defined with GROUP BY clausein a SELECT statement is called
apartition. A query result set may have just one partition holding al the rows, afew large
partitions, or many small partitions holding just afew rows each. Analytical functions are applied to
each row in each partition.

RANK Function

The RANK function produces an ordered ranking of rows starting with arank of one. Users specify
an optional PARTI Tl ON clause and arequired ORDER BY clause.The PARTI TI ONkeyword is
used to define where the rank resets. The specific column that is ranked is determined by the
ORDER BY clause. If no partition is specified, ranking is performed over the entire result set. RANK
assigns arank of 1 to the smallest value unless descending order is used.

In the following example, the query ranks managers for each department based on the total salary of
all employees working under that manager.

SELECT departnent _id deptno, job id job, SUMsal ary),
RANK() OVER(PARTI TI ON BY departnent i d ORDER BY
SUM sal ary) DESC)
AS | obdep_rank,
RANK() OVER(ORDER BY SUM sal ary) DESC) AS sunsal rank
FROM enpl oyees
GROUP BY departnent _id, job_id,

DEPTNO JOB SUM SALARY) JOBDEP RANK SUMSAL_RANK
90 AD VP 34000 1 1
90 AD PRES 24000 2 2
80 SA REP 19600 1 3
60 | T_PROG 19200 1 4
20 M<K_MAN 13000 1 5

110 AC_MGR 12000 1 6
50 ST_CLERK 11700 1 7
80 SA MAN 10500 2 8
110 AC_ACCOUNT 8300 2 9

SA_REP 7000 1 10
20 MK_REP 6000 2 11
50 ST_MAN 5800 2 12
10 AD_ASST 4400 1 13

13 rows sel ect ed.

Note: For ranking in groups provided by CUBE and ROLLUP, use GROUPI N& ) flagsinthe
PARTI TI ON BY clauseto trigger resetting.

Introduction to Oracle9i: SQL 17-30



Instructor Note (continued)
CUME_DI ST Function

The cumulative distribution function computes the relative position of ava ue relative to the other
valuesin its group (partition.) The CUME_DI ST function defines the fraction of the rows, in the
partition of a given row, that come before or are ties with the current value. It returnsthe results as a
decimal value between zero and one, excluding zero and including one. The results of a CUME_DI ST
function are often called the percentile values. Default order is ascending, meaning that the lowest value
in apartition gets the lowest CUME_DI ST.
SELECT departnent _id DEPTNO, job id JOB, SUM sal ary),

CUME_DI ST() OVER(PARTI TI ON BY departnent _i d ORDER BY

SUM sal ary) DESC)

AS cume_di st _per _dep
FROM enpl oyees
GROUP BY departnment _id, job_ id
ORDER BY departnment _id, SUMsal ary);

DEPTNO JOB SUM SALARY) CUME_ DI ST_PER DEP
10 AD ASST 4400 1
20 MK_REP 6000 1
20 MK_MAN 13000 .5
50 ST_MAN 5800 1
50 ST_CLERK 11700 .5
60 | T_PROG 19200 1
80 SA MAN 10500 1
80 SA REP 19600 .5
90 AD PRES 24000 1
90 AD VP 34000 .5
110 AC_ACCOUNT 8300 1
110 AC_MGR 12000 .5

SA_REP 7000 1

13 rows sel ect ed.

PERCENT _RANK Function:

This function returns the rank of avalue relative to agroup of values. It returns values in the range of
zero to one. The formula used by thisfunction is:

(rank of row inits partition - 1) / ( number of rowsin the partition - 1)

Introduction to Oracle9i: SQL 17-31



Introduction to Oracle9i: SQL 17-32



Advanced Subqueries

Copyright © Oracle Corporation, 2001. All rights reserved.

Schedule: Timing Topic
60 minutes Lecture
50 minutes Practice

110 minutes Totd



Objectives

After completing this lesson, you should be able
to do the following:

* Write a multiple-column subquery

®* Describe and explain the behavior of subqueries when
null values are retrieved

®* Write asubquery in a FROMclause
®* Use scalar subqueries in SQL

®* Describe the types of problems that can be solved with
correlated subqueries

* Write correlated subqueries

* Update and delete rows using correlated subqueries
® Usethe EXI STSand NOT EXI STS operators

® Usethe W THclause

18-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn how to write multi ple-column subqueries and subqueries in the FROMclause
of a SELECT statement. Y ou aso learn how to solve problems by using scalar, correlated subqueries
and the W TH clause.

Introduction to Oracle9i: SQL 18-2




What Is a Subquery?

A subquery is a SELECT statement embedded in a
clause of another SQL statement.

Main 3 SELECT ...
query FROM
VWHERE
( SELECT ... <— subquery
FROM ...
WHERE ...)
18-3 Copyright © Oracle Corporation, 2001. All rights reserved.

What Is a Subquery?
A subquery isa SELECT statement that is embedded in a clause of another SQL statement, called the
parent statement.

The subquery (inner query) returns avalue that is used by the parent statement. Using a nested
subquery is equivalent to performing two sequentia queries and using the result of the inner query as
the search value in the outer query (main query).

Subqueries can be used for the following purposes:

To provide values for conditionsin WHERE, HAVI NG, and START W TH clauses of SELECT
statements

To define the set of rows to be inserted into the target table of an | NSERT or CREATE TABLE
statement

To define the set of rows to beincluded in aview or snapshot in a CREATE VI EWor CREATE
SNAPSHOT statement

To define one or more values to be assigned to existing rowsin an UPDATE statement

To define atable to be operated on by a containing query. (Y ou do this by placing the subquery
in the FROMclause. This can be donein | NSERT, UPDATE, and DELETE statements as well.)

Note: A subquery is evaluated once for the entire parent statement.

Instructor Note
You can skip this dideif the students are already familiar with these concepts.

Introduction to Oracle9i: SQL 18-3




Subqueries

SELECT sel ect | i st

FROM table

VWHERE expr operator |(SELECT sel ect_Ii st
FROM table);

* The subquery (inner query) executes once before
the main query.

®* The result of the subquery is used by the main
query (outer query).

18-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Subqueries

Y ou can build powerful statements out of simple ones by using subqueries. Subqueries can be very
useful when you need to select rows from a table with a condition that depends on the datain the table
itself or some other table. Subqueries are very useful for writing SQL statements that need values
based on one or more unknown conditional values.

In the syntax:
oper at or includes acomparison operator such as>, =, or I N

Note: Comparison operators fall into two classes: single-row operators (>, =, >=, <, <>, <=) and
multiple-row operators (I N, ANY, ALL).

The subquery is often referred to as a nested SELECT, sub-SELECT, or inner SELECT statement.
Theinner and outer queries can retrieve datafrom either the same table or different tables.

Instructor Note
You can skip this dideif the students are already familiar with these concepts.

Introduction to Oracle9i: SQL 18-4



Using a Subquery

SELECT | ast _nane

FROM  enpl oyees 10500
WHERE sal ary > -«
( SELECT sal ary
FROM  enpl oyees
WHERE enployee_ id = 149) |;

| LAST_NAME
|King

|Kochhar

|De Haan

[Abel

|Hanstein

|Higgins

B rows selected.

18-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Subquery
In the example in the dide, the inner query returns the salary of the employee with employee number
149. The outer query uses the result of the inner query to display the names of all the employees who
earn more than this amount.
Example

Display the names of all employees who earn less than the average salary in the company.

SELECT | ast_nanme, job _id, salary

FROM  enpl oyees

WHERE salary < (SELECT AV sal ary)
FROM  enpl oyees);

Instructor Note
You can skip this dideif the students are already familiar with these concepts.

Introduction to Oracle9i: SQL 18-5




Multiple-Column Subqueries

<

Main query

WHERE (MANAGER_ID, DEPARTMENT_ID) IN

Subquery
100 a0
102 60
124 50

Each row of the main query is compared to
values from a multiple-row and multiple-column
subquery.

18-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Multiple-Column Subqueries

So far you have written single-row subqueries and multiple-row subqueries where only one columnis
returned by theinner SELECT statement and thisis used to evaluate the expression in the parent
select statement. If you want to compare two or more columns, you must write a compound WHERE
clause using logical operators. Using multiple-column subqueries, you can combine duplicate WHERE
conditionsinto a single WHERE clause.

Syntax
SELECT col um, col um,
FROM tabl e

VHERE (colum, colum, ...) IN
( SELECT col umm, col umm,
FROM table

WHERE condition);

The graphic in the dideillustrates that the values of the MANAGER _| D and DEPARTMENT _I Dfrom
the main query are being compared with the MANAGER | D and DEPARTMENT _I D valuesretrieved
by the subquery. Since the number of columnsthat are being compared are more than one, the
example qualifies as a multiple-column subquery.

Introduction to Oracle9i: SQL 18-6




Column Comparisons

Column comparisons in a multiple-column subquery
can be:

®* Pairwise comparisons
* Nonpairwise comparisons

18-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Pairwise versus Nonpairwise Comparisons

Column comparisons in a multiple-column subquery can be pairwise comparisons or nonpairwise
comparisons.

In the example on the next dide, a pairwise comparison was executed in the WHERE clause. Each
candidate row in the SELECT statement must have both the same MANAGER | D column and the
DEPARTMENT _| D asthe employee with the EMPLOYEE | D178 or 174.

A multiple-column subguery can aso be a nonpairwise comparison. In a nonpairwise comparison,
each of the columns from the WHERE clause of the parent SELECT statement are individually
compared to multiple values retrieved by the inner select statement. The individual columns can
match any of the values retrieved by the inner select statement. But collectively, al the multiple
conditions of the main SELECT statement must be satisfied for the row to be displayed. The example

on the next page illustrates a nonpairwise comparison.

Introduction to Oracle9i: SQL 18-7




Pairwise Comparison Subquery

Display the details of the employees who are managed
by the same manager and work in the same department
as the employees with EMPLOYEE | D178 or 174.

SELECT enpl oyee_i d, manager id, departnent _id
FROM enpl oyees
WHERE (nanager _id, department_id) IN
(SELECT manager _1d, departnent _1d
FROM  enpl oyees
WHERE enployee id IN (178,174))
AND enpl oyee_id NOT IN (178,174);

18-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Pairwise Comparison Subquery

The examplein the dideisthat of a multiple-column subquery because the subguery returns more than
one column. It compares the values in the MANAGER _| D column and the DEPARTMVENT _I D column
of each row in the EMPLOYEES table with the values in the MANAGER | D column and the
DEPARTNMENT _I D column for the employees with the EMPLOYEE | D 178 or 174.

First, the subquery to retrieve the MANAGER | D and DEPARTMENT _| D values for the employees
with the EMPLOYEE | D178 or 174 is executed. These values are compared with the MANAGER | D
column and the DEPARTMENT _| D column of each row in the EMPLOYEES table. If the values match,
the row is displayed. In the output, the records of the employees with the EMPLOYEE | D178 or 174
will not be displayed. The output of the query in the dide follows.

| EMPLOYEE_ID | MANAGER_ID | DEPARTMENT _ID
| 176 | 143 | a0

Introduction to Oracle9i: SQL 18-8



Nonpairwise Comparison Subquery

Display the details of the employees who are managed by
the same manager as the employees with EMPLOYEE | D
174 or 141 and work in the same department as the
employees with EMPLOYEE | D174 or 141.

SELECT enpl oyee_id, manager _id, departnent_id
FROM enpl oyees
VWHERE  nanager _id_I N
(SELECT nmanager _id
FROM enpl oyees
VWHERE enployee id IN (174, 141))
AND departnent _id IN
(SELECT departnent _id
FROM enpl oyees
WHERE enployee id IN (174, 141))

AND  enployee_id NOT | N(174, 141);

18-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Nonpairwise Comparison Subquery

The exampl e shows a nonpairwise comparison of the columns. It displays the EMPLOYEE | D,
MANAGER | D, and DEPARTMENT _I D of any employee whose manager 1D matches any of the manager
IDs of employees whose employee IDs are either 174 or 141 and DEPARTVENT _| D match any of the
department 1Ds of employees whose employee IDs are either 174 or 141.

First, the subquery to retrieve the MANAGER | D values for the employees with the EMPLOYEE | D 174
or 141 is executed. Similarly, the second subquery to retrieve the DEPARTMENT _| D valuesfor the
employees with the EMPLOYEE | D 174 or 141 is executed. The retrieved values of the MANAGER | D
and DEPARTMENT _I D columns are compared with the MANAGER | D and DEPARTMENT _I D column
for each row in the EMPLOYEES table. If the MANAGER | D column of the row in the EMPLOYEES table
matches with any of the values of the MANAGER | D retrieved by the inner subquery and if the
DEPARTMENT | D column of the row inthe EMPLOYEES table matches with any of the values of the
DEPARTMENT I D retrieved by the second subquery, the record is displayed. The output of the query in
the didefollows.

| EMPLOYEE_ID | MANAGER_ID | DEPARTMENT ID

| 142 | 124 | 50
| 143 | 124 | 500
| 144 | 124 | 50
| 176 | 143 | a0

Introduction to Oracle9i: SQL 18-9



Using a Subquery
in the FROMClause

SELECT a.last_name, a.salary,

a.departnent __id, b.salavg
FROM enpl oyees a, [SELECT departnent id,
AVE sal ary) sal avg
FROM enpl oyees
GROUP BY departnment _id) b
WHERE a.department _id = b.departnent _id

AND a.sal ary > b.sal avg;

| LAST_NAME [ salary | DEPARTMENT_ID | SALAVG
[Hartstein | 13000 || 20| 9500
[Maurgos | 5800 | 50 || 3500
[Hunold | 5000 || B0 || 400
[Tiotkey | 10500 || a0 || 10033.3333
[Abel | 11000 || a0 || 10033.3333
[King | 24000 || a0 | 19333.3333
[Higgins | 12000 || 110 || 10150

7 rows selected.

‘ 18-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Subquery in the FROMClause

Y ou can use a subguery in the FROMclause of a SELECT statement, which is very smilar to how views
are used. A subquery in the FROMclause of a SELECT statement isalso called aninline view. A
subquery in the FROMclause of a SELECT statement defines a data source for that particular SELECT
statement, and only that SELECT statement. The example on the dide displays employee last names,
salaries, department numbers, and average salaries for al the employees who earn more than the average
salary in their department. The subquery in the FROMclause is named b, and the outer query references
the SALAVG column using this dias.

Instructor Note

Y ou may wish to point out that the example demonstrates a useful technique to combine detail row
values and aggregate data in the same output.

Introduction to Oracle9i: SQL 18-10



Scalar Subquery Expressions

®* A scalar subquery expression is a subquery that
returns exactly one column value from one row.

® Scalar subqueries were supported in Oracle8i only in a
limited set of cases, For example:

— SELECT statement (FROMand WHERE clauses)
— VALUES list of an | NSERT statement
® In Oracle9i, scalar subqueries can be used in:

— Condition and expression part of DECODE and CASE
— All clauses of SELECT except GROUP BY

‘ 18-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Scalar Subqueries in SQL

A subguery that returns exactly one column value from one row is also referred to as a scalar
subqguery. Multiple-column subqueries written to compare two or more columns, using a compound
WHERE clause and logical operators, do not qualify as scalar subqueries.

The value of the scalar subquery expression is the value of the select list item of the subquery. If the
subquery returns 0 rows, the value of the scalar subquery expressionis NULL. If the subquery returns
more than one row, the Oracle Server returns an error. The Oracle Server has aways supported the
usage of ascalar subquery in a SELECT statement. The usage of scalar subqueries has been
enhanced in Oraclei. Y ou can now use scalar subgueriesin:

» Condition and expression part of DECODE and CASE

e All clauses of SELECT except GROUP BY

* Intheleft-hand side of the operator in the SET clause and WHERE clause of UPDATE statement
However, scalar subqueries are not valid expressionsin the following places:

e Asdefault valuesfor columns and hash expressions for clusters

* Inthe RETURNI NGclause of DML statements

» Asthebasisof afunction-based index

* InGROUP BY clauses, CHECK constraints, WHEN conditions

*  HAVI NGclauses

e InSTART W THand CONNECT BY clauses

. In statements that are unrelated to queries, such as CREATE PROFI LE

Introduction to Oracle9i: SQL 18-11




Scalar Subqueries: Examples

Scalar Subqueries in CASE Expressions

SELECT enpl oyee_id, |ast_nane,
( CASE

VWHEN department _id =
(SELECT departnent _1d FROM depart nents

WHERE | ocation id = 1800)

THEN ’ Canada’ ELSE ' USA' END) | ocation
FROM  enpl oyees;

20

Scalar Subqueries in ORDER BY Clause

SELECT  enpl oyee_id, |ast_name
FROMVI enpl oyees e

ORDER BY [SELECT depart nent _nane
FROM departnents d
WHERE e. departnent _id = d. departnent _i d)f

‘ 18-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Scalar Subqueries: Examples
Thefirst example in the dide demonstrates that scalar subqueries can be used in CASE expressions.
Theinner query returns the value 20, which is the department 1D of the department whose location ID
is1800. The CASE expression in the outer query uses the result of the inner query to display the
employee ID, last names, and a value of Canada or USA, depending on whether the department ID of
the record retrieved by the outer query is 20 or not.

The result of the preceding example follows:

| EMPLOYEE_ID | LAST_NAME | LOCATI
| 100 | |King (=

| 101 |[Kochhar s,

| 102 |De Haan (=

|. - 201 |Har15tein |Canada

| 202 |Faj,r |Canada

| 205 Higgins IUsA,

| 206 | Gietz s,

20 rows selected.

Introduction to Oracle9i: SQL 18-12



Scalar Subqueries: Examples (continued)

The second examplein the dide demonstrates that scalar subqueries can be used in the ORDER BY
clause. The example orders the output based on the DEPARTMENT _NAME by matching the
DEPARTMENT | D from the EMPLOYEES table with the DEPARTMVENT _|I D from the
DEPARTMENTS table. This comparison in donein ascalar subquery in the ORDER BY clause. The
result of the the second example follows:

EMPLOYEE_ID | LAST_NAME
206 |Higgins
206 | Gietz
200 Whalen
100 |King
101 |[Kochhar
102 |De Haan
103 [Hunald
104 |Emst
107 |L|:|rentz
201 |Hartstein

|
|
|
|
|
|
|
|
|
|
|
| 202 |Fay
|
|
|
|
|
|
|
|
|
|

149 | Zlotkey

176 [Taylor

174 | Abel

EMPLOYEE_ID | LAST_NAME

124 |hf1|:|urg|:|5

141 |Rajs

142 |Davies

143 |Matos

144 |‘v’argas

178 |Grant

20 rows selected.

The second exampl e uses a correlated subquery. In a correlated subquery, the subquery references a
column from atable referred to in the parent statement. Correlated subqueries are explained later in
thislesson.

Introduction to Oracle9i: SQL 18-13



Correlated Subqueries

Correlated subqueries are used for row-by-row
processing. Each subquery is executed once for
every row of the outer query.

GET
candidate row from outer query

Y

EXECUTE
inner query using candidate row value

Y

USE
values from inner query to qualify or
disqualify candidate row

‘ 18-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Correlated Subqueries

ﬁ

The Oracle Server performs a corrdated subquery when the subquery references acolumn from a
table referred to in the parent statement. A correlated subquery is evaluated once for each row
processed by the parent statement. The parent statement can be a SELECT, UPDATE, or DELETE
statement.

Nested Subqueries Versus Correlated Subqueries
With anormal nested subguery, the inner SELECT query runs first and executes once, returning
values to be used by the main query. A correlated subquery, however, executes once for each
candidate row considered by the outer query. In other words, the inner query is driven by the outer
query.
Nested Subquery Execution

e Theinner query executes first and finds a value.

» Theouter query executes once, using the value from the inner query.
Correlated Subquery Execution

* Get acandidate row (fetched by the outer query).

» Execute theinner query using the value of the candidate row.

o Usethe vauesresulting from the inner query to qualify or disqualify the candidate.

* Repeat until no candidate row remains.

Introduction to Oracle9i: SQL 18-14




Correlated Subqueries

SELECT col uml1, col umm2,

FROM tablel

WHERE col uml operat or
(SELECT col um, col um?2
FROM t abl e2
VWHERE  exprl =

[outer Jexpr2);

The subquery references a column from a table in
the parent query.

‘ 18-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Correlated Subqueries (continued)

A correlated subquery is one way of reading every row in atable and comparing valuesin each row
againgt related data. It is used whenever a subquery must return a different result or set of results for
each candidate row considered by the main query. In other words, you use a correlated subquery to
answer amultipart question whose answer depends on the value in each row processed by the parent
statement.

The Oracle Server performs a corrdated subquery when the subquery references acolumn from a
table in the parent query.

Note: You can usethe ANY and ALL operatorsin a correlated subquery.

Introduction to Oracle9i: SQL 18-15



Using Correlated Subqueries

Find all employees who earn more than the average
salary in their department.

SELECT | ast _name, salary, departnent _id
FROM  enpl oyees outer
WHERE sal ary >
| ( SELECT AV sal ary)
FROM  enpl oyees
VWHERE departnment _id =
outer.departnent _id)|;

Each time a row from
the outer query

is processed, the
inner query is
evaluated.

‘ 18-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Correlated Subqueries

The example in the dide determines which employees earn more than the average salary of their
department. In this case, the correlated subquery specifically computes the average salary for each
department.

Because both the outer query and inner query use the EMPLOYEES table in the FROMclause, an dias
isgiven to EMPLOYEES in the outer SELECT statement, for clarity. Not only does the aias make the
entire SELECT statement more readable, but without the alias the query would not work properly,

because the inner statement would not be able to distinguish the inner table column from the outer
table column.

Instructor Note

Y ou may wish to indicate that the aliases used are a syntactical requirement. The alias OUTER used

here is mandatory, unlike other cases where an aliasis used to add clarity and readability to the SQL
Sstatement.

Introduction to Oracle9i: SQL 18-16



Using Correlated Subqueries

Display details of those employees who have switched
jobs at least twice.

SELECT e. enpl oyee_id, last_name,e.job_id
FROM enpl oyees e
WHERE 2 <= (SELECT COUNT(*)
FROM job_history
WHERE enpl oyee_id = e. enpl oyee_id);

| EMPLOYEE_ID | LAST_NAME | JoB_ID
| 101 [Kochhar [aD_wP

| 176 [Taylor [sa_REFP

| 200 |[whalen [AD_ASST

‘ 18-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Correlated Subqueries

The example in the dide displays the details of those employees who have switched jobs at least
twice. The Oracle Server evaluates a correlated subquery as follows:

1. Select arow from the table specified in the outer query. Thiswill be the current candidate row.
2. Storethe value of the column referenced in the subquery from this candidate row. (In the
example in the dide, the column referenced in the subquery isE. EMPLOYEE | D.)

3. Perform the subquery with its condition referencing the value from the outer query’ s candidate
row. (In the example in the dlide, group function COUNT( *) is evaluated based on the value
of the E. EMPLOYEE_| D column obtained in step 2.)

4. Evaluate the WHERE clause of the outer query on the basis of results of the subquery
performed in step 3. Thisis determines if the candidate row is selected for output. (In the
example, the number of times an employee has switched jobs, evauated by the subquery, is
compared with 2 in the WHERE clause of the outer query. If the condition is satisfied, that
employee record is displayed.)

5. Repeat the procedure for the next candidate row of the table, and so on until all the rowsin the
table have been processed.

The corrélation is established by using an element from the outer query in the subquery. In this

example, the correlation is established by the statement EMPLOYEE | D = E. EMPLOYEE | Din

which you compare EMPLOYEE_| D from the table in the subquery with the EMPLOYEE_| D

from the table in the outer query.

Introduction to Oracle9i: SQL 18-17



Using the EXI STS Operator

* The EXI STS operator tests for existence of rows in
the results set of the subquery.

* If asubquery row value is found:

— The search does not continue in the inner query
— The condition is flagged TRUE

* If asubquery row value is not found:
— The condition is flagged FALSE

— The search continues in the inner query

18-18 Copyright © Oracle Corporation, 2001. All rights reserved.

The EXI STS Operator

With nesting SELECT statements, all logica operators are valid. In addition, you can use the

EXI STS operator. This operator is frequently used with correlated subqueries to test whether a
value retrieved by the outer query exists in the results set of the values retrieved by the inner query.
If the subquery returns at least one row, the operator returns TRUE. If the value does not exigt, it
returns FALSE. Accordingly, NOT EXI STS tests whether a value retrieved by the outer query is
not apart of the results set of the values retrieved by the inner query.

Introduction to Oracle9i: SQL 18-18




Using the EXI STS Operator

Find employees who have at least one person
reporting to them.

SELECT enpl oyee_id, |ast_name, job_id, departnent _id
FROM  enpl oyees outer
WHERE [EXISTS]( SELECT ' X
FROM  enpl oyees
WHERE nmanager _id =
out er. enpl oyee_i d);

| EMPLOYEE_ID | LAST_NAME | JOB_ID | DEPARTMENT_ID

| 100 [King [AD_PRES | a0
| 101 [Kochhar [aD_wP | a0
| 102 |[De Haan [AD_wP | a0
| 103 [Hunold [IT_PROG | B0
| 124 [Mourgos [ST_MAN | 50
| 149 [Tlotkey [S8_tan | a0
| 201 |[Hartstein M _ran | 20
| 205 [Higgins [aC_MGR | 110

8 rows selected.

‘ 18-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the EXI STS Operator

The EXI STS operator ensures that the search in the inner query does not continue when at least one

match is found for the manager and employee number by the condition:
WHERE manager id = outer.enployee_ id.

Note that the inner SELECT query does not need to return a specific value, so a constant can be
selected. From a performance standpoint, it is faster to select a constant than a column.
Note: Having EMPLOYEE | Dinthe SELECT clause of the inner query causes atable scan for that

column. Replacing it with the literal X, or any constant, improves performance. Thisis more efficient
than using the | N operator.

A | N construct can be used as an dternative for a EXI STS operator, as shown in the following
example:
SELECT enpl oyee_id, | ast_nane, job_id, departnent _id
FROM  enpl oyees
WHERE enpl oyee_id IN (SELECT manager _id
FROM  enpl oyees
WHERE manager _id |'S NOT NULL);

Introduction to Oracle9i: SQL 18-19



Using the NOT EXI STS Operator

Find all departments that do not have any employees.

SELECT departnment _id, departnent_nane
FROM departnents d
WHERE|NOT EXI STY ( SELECT ' X
FROM  enpl oyees
VWHERE departnent _id
= d. departnent _id);

| DEPARTMENT _ID | DEPARTMENT _NAME
| 190 |Contracting

‘ 18-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the NOT EXI STS Operator
Alternative Solution
A NOT | N construct can be used as an dternative for aNOT EXI STS operator, as shown in the
following example.

SELECT departnent _id, departnent_nane

FROM departments

WHERE department _id NOT IN (SELECT departnent _id
FROM  enpl oyees);

no rows selected

However, NOT | Nevaluatesto FALSE if any member of the set isaNULL value. Therefore, your
query will not return any rows even if there are rowsin the departments tabl e that satisfy the WHERE
condition.

Introduction to Oracle9i: SQL 18-20




Correlated UPDATE

UPDATE tabl el aliasl
SET colum = (SELECT expression
FROM table2 alias2
WHERE aliasl.colum =
al i as2. col um);

Use a correlated subquery to update rows in one
table based on rows from another table.

‘ 18-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Correlated UPDATE
In the case of the UPDATE statement, you can use a correl ated subguery to update rowsin onetable
based on rows from another table.

Introduction to Oracle9i: SQL 18-21



Correlated UPDATE

 Denormalize the EMPLOYEES table by adding a
column to store the department name.

e Populate the table by using a correlated
update.

ALTER TABLE enpl oyees
ADD( depart ment _nanme VARCHAR2(14));

UPDATE enpl oyees e
SET depart nent _name =
(SELECT departnent_nane
FROM departments d
VWHERE e.departnent_id = d.departnent _id);

‘ 18-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Correlated UPDATE (continued)

The example in the dide denormalizes the EMPLOYEES table by adding a column to store the department
name and then populates the table by using a correlated update.

Hereis another example for a corrdated update.
Problem Statement

Use a correlated subquery to update rowsin the EMPLOYEES table based on rows from the REWARDS
table:
UPDATE enpl oyees
SET salary = (SELECT enpl oyees. sal ary + rewards. pay_rai se
FROM  rewards
WHERE enployee id = enployees. enployee id
AND payrai se date =
( SELECT MAX( payrai se_date)
FROM  rewards
WHERE enpl oyee_id = enpl oyees. enpl oyee_i d))
WHERE enpl oyees. enpl oyee_id
I N ( SELECT enpl oyee_i d
FROM rewards);
Instructor Note
In order to demonstrate the code example in the notes, you must first run the script file
\ I abs\ cre_reward. sql , which creates the REWARDS table and inserts records into the table.

Remember to rollback the transaction if you demo the script in the dide or notes page. Thisis very
important asif thisis not done, the outputs shown in the practices will not match.

Introduction to Oracle9i: SQL 18-22



Correlated UPDATE (continued)

This example uses the REWARDS table. The REWARDS table has the columns EMPLOYEE_| D,
PAY_RAI SE, and PAYRAI SE_DATE. Every time an employee gets a pay raise, arecord with the
details of the employee ID, the amount of the pay raise, and the date of receipt of the pay raiseis
inserted into the REWARDS table. The REWARDS table can contain more than one record for an
employee. The PAYRAI SE _DATE column is used to identify the most recent pay raise received by
an employee.

In the example, the SALARY column in the EMPLOYEES table is updated to reflect the latest pay
raise received by the employee. Thisis done by adding the current salary of the employee with the
corresponding pay raise from the REWARDS table.

Introduction to Oracle9i: SQL 18-23



Correlated DELETE

DELETE FROM tabl el aliasl
VWHERE col utm oper at or
( SELECT expressi on
FROM table2 alias2
WHERE aliasl.colum = alias2.colum);

Use a correlated subquery to delete rows in one table
based on rows from another table.

‘ 18-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Correlated DELETE

In the case of a DELETE statement, you can use a correlated subquery to delete only those rows that
also exist in another table. If you decide that you will maintain only the last four job history records
inthe JOB_HI STORY table, then when an employee transfersto afifth job, you delete the ol dest
JOB_HI STORY row by looking up the JOB_HI STORY table for the M N( START _DATE) for the
employee. The following code illustrates how the preceding operation can be performed using a
correlated DELETE:

DELETE FROM j ob_hi story JH
VWHERE enpl oyee_id =
( SELECT enpl oyee_id
FROM enpl oyees E
WHERE JH. enpl oyee id = E. enpl oyee i d
AND start _date =
(SELECT M N(start _date)
FROM job_history JH
WHERE JH. enpl oyee_id = E. enpl oyee_id)
AND 5 > (SELECT COUNT(*)
FROM job_history JH
WHERE JH. enpl oyee_id = E. enpl oyee_id
GROUP BY enpl oyee_id
HAVI NG COUNT(*) >= 4));

Introduction to Oracle9i: SQL 18-24




Correlated DELETE

Use a correlated subquery to delete only those rows
from the EMPLOYEES table that also exist in the
EMP_HI STORY table.

DELETE FROM enpl oyees E
WHERE enpl oyee id =
( SELECT enpl oyee_i d
FROM enp_history
WHERE enpl oyee id = E. enpl oyee_id);

‘ 18-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Correlated DELETE (continued)
Example

Two tables are used in this example. They are:
» The EMPLOYEES table, which gives details of al the current employees
e TheEMP_HI STORY table, which gives details of previous employees

EMP_HI STORY contains data regarding previous employees, so it would be erroneous if the same
employee’ srecord existed in both the EMPLOYEES and EMP_HI STORY tables. Y ou can delete such
erroneous records by using the correlated subquery shown in the dide.

Instructor Note

In order to demonstrate the code examplein the dide, you must first run the script file
\ | abs\ cre_enphi story. sql , which createsthe EMP_HI STORY table and inserts records into

thetable.
Introduction to Oracle9i: SQL 18-25




The W TH Clause

®* Using the W THclause, you can use the same
guery block in a SELECT statement when it occurs
more than once within a complex query.

* The W THclause retrieves the results of a query
block and stores it in the user’s temporary
tablespace.

* The W THclause improves performance

‘ 18-26 Copyright © Oracle Corporation, 2001. All rights reserved.

The W THclause

Using the W TH clause, you can define a query block before using it in aquery. The W TH clause
(formally known assubquery_f act ori ng_cl ause) enables you to reuse the same query block
in a SELECT statement when it occurs more than once within acomplex query. Thisis particularly
useful when a query has many references to the same query block and there are joins and
aggregations.

Using the W TH clause, you can reuse the same query when it is high cost to evaluate the query block
and it occurs more than once within a complex query. Using the W TH clause, the Oracle Server
retrieves the results of a query block and storesit in the user’ stemporary tablespace. This can
improve performance.

W TH Clause Benefits
» Makesthe query easy to read

» Evaluates aclause only once, evenif it appears multiple timesin the query, thereby
enhancing performance

Introduction to Oracle9i: SQL 18-26



W TH Clause: Example

Using the W TH clause, write a query to display the
department name and total salaries for those
departments whose total salary is greater than the
average salary across departments.

18-27 Copyright © Oracle Corporation, 2001. All rights reserved.

W TH Clause: Example
The problem in the dlide would require the following intermediate cal culations:
1. Cdculatethetota saary for every department, and store the result using aW TH clause.
2. Cadculate the average salary across departments, and store the result using aW TH clause.

3. Comparethetota salary caculated in the first step with the average saary caculated in the
second step. If thetotal salary for aparticular department is greater than the average sdary
across departments, display the department name and the total salary for that department.

The solution for the preceding problem is given in the next page.

Introduction to Oracle9i: SQL 18-27



W TH Clause: Example

dept _costs AS (
SELECT d. departnment _nanme, SUMe. sal ary) AS dept_total
FROM enpl oyees e, departnents d
WHERE e.departnent _id = d.departnent _id
GROUP BY d. depart nent _nane),
avg_cost AS (
SELECT SUM dept _total )/ COUNT(*) AS dept_avg
FROM  dept_costs)
SELECT *
FROM dept _costs
WHERE dept _total >
( SELECT dept _avg
FROM avg_cost)
ORDER BY depart nent _nane;

18-28 Copyright © Oracle Corporation, 2001. All rights reserved.

W TH Clause: Example (continued)

The SQL code in the dide is an example of a situation in which you can improve performance and
write SQL more simply by using the W TH clause. The query creates the query names DEPT_COSTS
and AVG_COST and then uses them in the body of the main query. Internally, the W TH clauseis
resolved either asan in-line view or atemporary table. The optimizer chooses the appropriate
resolution depending on the cost or benefit of temporarily storing the results of the W TH clause.
Note: A subguery in the FROMclause of a SELECT statement is also caled an in-line view.

The output generated by the SQL code on the dide will be asfollows:

| DEPARTMENT NAME | DEPT_TOTAL
[Executive | SB000
Sales | 30100

The W TH Clause Usage Notes
e Itisused only with SELECT statements.

e A guery nameisvisibleto all W TH element query blocks (including their subguery blocks)
defined after it and the main query block itself (including its subquery blocks).

* When the query name isthe same as an existing table name, the parser searches from the inside
out, the query block name takes precedence over the table name.

e TheW TH clause can hold more than one query. Each query is then separated by a comma.
Introduction to Oracle9i: SQL 18-28




Summary

In this lesson, you should have learned the following:

* A multiple-column subquery returns more than
one column.

®* Multiple-column comparisons can be pairwise or
nonpairwise.

e A multiple-column subquery can also be used in
the FROMclause of a SELECT statement.

e Scalar subqueries have been enhanced in
Oracle9i.

‘ 18-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Y ou can use multiple-column subqueries to combine multiple WHERE conditions into a single WHERE
clause. Column comparisons in a multiple-column subquery can be pairwise comparisons or non-
pai rwise comparisons.

Y ou can use a subquery to define atable to be operated on by a containing query.

Oracle 9i enhances the the uses of scalar subqueries. Scalar subqueries can now be used in:
» Condition and expression part of DECODE and CASE
» All clauses of SELECT except GROUP BY
e SET clause and WHERE clause of UPDATE statement

Introduction to Oracle9i: SQL 18-29



Summary

® Correlated subqueries are useful whenever a
subquery must return a different result for each
candidate row.

®* The EXI STS operator is a Boolean operator that
tests the presence of a value.

®* Correlated subqueries can be used with SELECT,
UPDATE, and DELETE statements.

® You can use the W THclause to use the same
guery block in a SELECT statement when it occurs
more than once

‘ 18-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary (continued)

The Oracle Server performs a corrdated subquery when the subquery references acolumn from a
table referred to in the parent statement. A correlated subquery is evaluated once for each row
processed by the parent statement. The parent statement can be a SELECT, UPDATE, or DELETE
statement. Using the W TH clause, you can reuse the same query when it is costly to reevaluate the
query block and it occurs more than once within a complex query.

Introduction to Oracle9i: SQL 18-30



Practice 18 Overview

This practice covers the following topics:
® Creating multiple-column subqueries
® Writing correlated subqueries

® Using the EXI STS operator

®* Using scalar subqueries

®* Using the W THclause

‘ 18-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 18 Overview

In this practice, you write multiple-column subqueries, correlated and scalar subqueries. Y ou also
solve problems by writing the W TH clause.

Instructor Note

Y ou might want to recap the ALL and ANY operators before the students start the practice. Thisis
required for the questions.

ALL: Compares avalueto every valuein alist or returned by aquery. Must be preceded by =, I=, >,
<, <=, >=, Evaluatesto TRUE if the query returns no rows.

SELECT * FROM enpl oyees

WHERE sal ary > = ALL ( 1400, 3000);

ANY: Compares avalue to each valuein alist or returned by a query. Must be preceded by =, !=, >,
<, <=, >=. Evaluatesto FALSE if the query returns no rows.
SELECT * FROM enpl oyees
WHERE sal ary = ANY
( SELECT sal ary FROM enpl oyees
VWHERE departnent_id = 30);

Introduction to Oracle9i: SQL 18-31




Practice 18

1. Writeaquery to display the last name, department number, and salary of any employee whose
department number and salary both match the department number and salary of any employee
who earns a commission.

| LAST_NAME | DEPARTMENT_ID | SALARY

Taylor | a0 | AE00
\Zlatkey | a0 | 10500
bl | a0 | 11000

2. Display the last name, department name, and salary of any employee whose salary and
commission match the salary and commission of any employee located in location ID 1700.

| LAST _NAME | DEPARTMENT _NAME |  SALARY

‘Whalen idrmiinistration | 4400
|Gietz |A|::|::|:|unting | §300
|Higgin5 |Accnunting | 12000
|Knchhar |E}{ecutive | 17000
|De Haan |Executive | 17000
King [Executive | 24000

B rows selected.

3. Create aquery to display the last name, hire date, and sdlary for all employees who have the
same salary and commission as Kochhar.

Note: Do not display Kochhar in the result set.

| LAST _NAME | HIRE_DATE | SALARY
\De Haan 13-JAN-23 | 17000

4. Create aquery to display the employees who earn asalary that is higher than the salary of
all of the salesmanagers (JOB_ | D = ' SA_MAN ). Sort the results on salary from highest to

lowest.

| LAST _NAME | JOB_ID | SALARY

King \A0_PRES | 24000
\Kochhar D WP | 17000
\De Haan D WP | 17000
Hartstein INAK_MARN | 13000
Higgins AC_MGR | 12000
bl |SA_REP | 11000

B rows selected.
Introduction to Oracle9i: SQL 18-32



Practice 18 (continued)

5. Display the details of the employee ID, last name, and department ID of those employees who
livein cities whose name begins with T.

| EMPLOYEE_ID | LAST_NAME | DEPARTMENT _ID

| 201 |Hartstein | 20

| 202 |Fay | 20

6. Write aquery to find al employees who earn more than the average saary in their departments.
Display last name, salary, department 1D, and the average sdary for the department.
Sort by average salary. Use aliases for the columns retrieved by the query as shown in the

sample output.

| ENAME | SALARY | DEPTHO | DEPT_AVG

IMourgos | 5800 | 50 | 3500
Hunald | 9000 | B0 | G400
Hartstein | 13000 | 20 | 9500
bl | 11000 | a0 | 10033.3333
Flatkey | 10500 | a0 | 10033.3333
Higgins | 12000 | 110 | 10150
King | 24000 | a0 | 193333333

7 rovwes selected.

7. Find all employees who are not supervisors.
a. First do thisusing the NOT EXI STS operator.

| LAST_NAME

|Ernst

|L|:|rentz

|F{ajs

|Dawes

|Matns

|‘v’argaa

bl

|Taj,rlnr

|Grant

|Wha|en

Fay

|Gietz

12 rows selected.
b. Can this be done by using the NOT | N operator? How, or why not?

Introduction to Oracle9i: SQL 18-33



Practice 18 (continued)

8. Write aquery to display the last names of the employees who earn less than the average salary in their
departments.

| LAST _NAME
|Knchhar

|De Haan

|Ern5t

|L|:|rentz

|Dawes
|Matns
|‘v’argaa

|Ta§,flc|r

Fay
|Gietz

10 rows selected.

9. Write aquery to display the last names of the employees who have one or more coworkersin their
departments with later hire dates but higher salaries.

| LAST NAME
|Rajs

|Daﬂes
|Mat|:|5
|\r’argas

|Taj,rlnr

Introduction to Oracle9i: SQL 18-34



Practice 18 (continued)
10. Writeaquery to display the employee ID, last names, and department names of all employees.
Note: Use ascaar subquery to retrieve the department name in the SELECT statement.

| EMPLOYEE_ID | LAST_NAME | DEPARTMENT
| 205 |Higgin5 |A|:|:Dunting

| 206 |Gietz |At:t:nunting

| 200 [Whalen \Adrministration
| 100 |P<ing |E}{ecutive

| 1M |Knchhar |Executive

| 102 |De Haan |Executive

| 103 |Hunold i

| 104 |Ermnst I

| 107 |Lorertz i

| 201 |Har15tein |Marketing

| 202 |FEI'_-,-' |Marketing

| 143 |Zlotkey |Sales

| 176 |Taj,fll:|r |Sa|es

| 174 || Abel Sales

| EMPLOYEE_ID | LAST_NAME | DEPARTMENT
| 124 |h.-“|u:|urg|:|5 |Shipping

| 141 |Rajs |Shipping

| 142 |Davies |Shipping

| 143 |Matos |Shipping

| 144 |‘v’argaa |Shipping

| 178 |Grant |

20 rows selected.

11. Writeaquery to display the department names of those departments whose total salary cost is above
one eighth (1/8) of the total salary cost of the whole company. Use the W TH clause to write this
query. Name the query SUVMVARY.

| DEPARTMENT _NAME | DEPT_TOTAL
[Executive | 58000
Sales | 30100

Introduction to Oracle9i: SQL 18-35



Introduction to Oracle9i: SQL 18-36



Hierarchical Retrieval

Copyright © Oracle Corporation, 2001. All rights reserved.

Schedule: Timing Topic
30 minutes Lecture
20 minutes Practice

50 minutes Totd




19-2

Objectives

After completing this lesson, you should be able
to do the following:

Interpret the concept of a hierarchical query
Create a tree-structured report

Format hierarchical data

Exclude branches from the tree structure

Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn how to use hierarchical queriesto create tree-structured reports.

Introduction to Oracle9i: SQL 19-2




Sample Data from the EMPLOYEES

Table

| EMPLOYEE_ID | LAST_NAME | JOB_ID | MANAGER_ID
| 100 [King [AD_PRES |
| 101 |[Kochhar [aD_wP | 100
| 102 |[De Haan [AD_wP | 100
| 103 [Hunald [T_PROG | 102
| 104 [Emst [IT_PROG | 103
| 107 |Lorentz [T_PROG | 103
| 124 [Mourgos [ST_mAN | 100
| 141 [Rajs [ST_CLERK | 124
| 142 [Davies [ST_CLERK | 124
| 143 [Matos [ST_CLERK | 124
| 144 |[vargas [ST_CLERK | 124
| 149 [Zlotkey [S8_tan | 100
| 174 [Abel |sa_REP | 149
| 176 [Taylor |sa_REP | 149
| EMPLOYEE_ID | LAST_NAME | JOB_ID | MANAGER_ID
| 178 |[Grant [S&_REP | 149
| 200 |[whalen [AD_ASST | 101
| 201 |[Hartstein M _ran | 100
| 202 |[Fay [hK_REF | 201
| 205 [Higgins [aC_MGR | 101
| 206 [Gietz [aC_ACCOUNT | 205
20 rows selected.

19-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Sample Data from the EMPLOYEES Table

Using hierarchical queries, you can retrieve data based on a natural hierarchical relationship between
rowsin atable. A relational database does not store records in a hierarchical way. However, where a
hierarchical relationship exists between the rows of asingletable, a process called tree walking
enabl es the hierarchy to be constructed. A hierarchical query isamethod of reporting, in order, the
branches of atree.

Imagine afamily tree with the eldest members of the family found close to the base or trunk of the
tree and the youngest members representing branches of the tree. Branches can have their own
branches, and so on.

A hierarchical query is possible when arelationship exists between rowsin atable. For example, in
the dide, you see that employees with the job IDsof AD_VP, ST _MAN, SA MAN, and MK_MAN report
directly to the president of the company. We know this because the MANAGER _| D column of these
records contain the employee ID 100, which belongs to the president (AD_PRES).

Note: Hierarchical trees are used in various fields such as human genealogy (family trees), livestock
(breeding purposes), corporate management (management hierarchies), manufacturing (product
assembly), evolutionary research (species development), and scientific research.

Introduction to Oracle9i: SQL 19-3



Natural Tree Structure
EMPLOYEE | D = 100 (Parent)

King
MANAGER | D = 100 (Child)

Kochhar De Hann Mourgos Zlotkey Hartstein

Whalen iggi | i | |
ale Higgins  Hunold Rajs Davies Matos Vargas

| | | Fay

) Abel  Taylor Grant
Gletz prpst Lorentz

19-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Natural Tree Structure

The EMPLOYEES table has atree structure representing the management reporting line. The hierarchy
can be created by looking at the relationship between equivalent values in the EMPLOYEE | D and
MANAGER | D columns. Thisrelationship can be exploited by joining the table to itself. The
MANAGER | D column contains the employee number of the employee’ s manager.

The parent-child relationship of atree structure enables you to control:
e Thedirectionin which the hierarchy is waked
* The starting point inside the hierarchy

Note: The dide displays an inverted tree structure of the management hierarchy of the employeesin
the EMPLOYEES table.

Instructor Note

Y ou can use the data shown in the previous slide to explain the tree structure shown in the dide.

Introduction to Oracle9i: SQL 19-4




Hierarchical Queries

SELECT [LEVEL], columm, expr...
FROM table

[ WHERE condi tion(s)]

[ START W TH condition(s)]

[ CONNECT BY PRI OR condition(s)]

VWHERE condition:

expr conpari son_operator expr

19-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Keywords and Clauses

Hierarchical queries can beidentified by the presence of the CONNECT BY and START W TH
clauses.

In the syntax:

SELECT Is the standard SELECT clause.

LEVEL For each row returned by a hierarchical query, the LEVEL pseudocolumn
returns 1 for aroot row, 2 for achild of aroot, and so on.

FROMtable Specifiesthe table, view, or snapshot containing the columns. Y ou can
select from only onetable.

WHERE Restricts the rows returned by the query without affecting other rows of
the hierarchy.

condition Is a comparison with expressions.

START W TH Specifiesthe root rows of the hierarchy (whereto start). This clauseis
required for atrue hierarchical query.

CONNECT BY  Specifies the columns in which the relationship between parent and child
PRI OR rowsexist. This clauseisrequired for ahierarchica query.

The SELECT statement cannot contain ajoin or query from aview that contains ajoin.

Introduction to Oracle9i: SQL 19-5




Walking the Tree

Starting Point

®* Specifies the condition that must be met
®* Accepts any valid condition

START W TH col unmml = val ue

Using the EMPLOYEES table, start with the employee

whose last name is Kochhar.
... START WTH | ast _nanme =’ Kochhar’

19-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Walking the Tree

The row or rowsto be used as the root of the tree are determined by the START W TH clause. The
START W TH clause can be used in conjunction with any valid condition.

Examples
Using the EMPLOYEES table, start with King, the president of the company.
START W TH manager id IS NULL

Using the EMPLOYEES table, start with employee Kochhar. A START W TH condition can contain a
subquery.
START W TH enpl oyee _id = ( SELECT enpl oyee id

FROM enpl oyees

WHERE | ast_name = ' Kochhar')
If the START W TH clause is omitted, the tree walk is started with all of the rows in the table as root
rows. If aWHERE clause is used, the walk is started with all the rows that satisfy the WHERE
condition. This no longer reflects atrue hierarchy.

Note: The clauses CONNECT BY PRI ORand START W THare not ANSI SQL standard.

Instructor Note

Y ou may wish to add that multiple hierarchical outputs are generated if more than one row satisfies
the START W TH condition.

Introduction to Oracle9i: SQL 19-6



Walking the Tree

CONNECT BY PRI OR col uml = col um?2

Walk from the top down, using the EMPLOYEES
table.

CONNECT BY PRI OR enpl oyee_id = nanager _id

Direction

Top down —> Columnl = Parent Key
Column2 = Child Key

Bottomup —> Columnl = Child Key
Column2 = Parent Key

19-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Walking the Tree (continued)

The direction of the query, whether it isfrom parent to child or from child to parent, is determined by
the CONNECT BY PRI OR column placement. The PRI OR operator refers to the parent row. To find
the children of a parent row, the Oracle Server evaluates the PRI OR expression for the parent row and
the other expressions for each row in the table. Rows for which the condition is true are the children
of the parent. The Oracle Server always selects children by evaluating the CONNECT BY condition
with respect to a current parent row.
Examples
Walk from the top down using the EMPLOYEES table. Define a hierarchical relationship in which the
EMPLOYEE | D value of the parent row is equal to the MANAGER | D value of the child row.
CONNECT BY PRI OR enpl oyee _id = manager _id
Walk from the bottom up using the EMPLOYEES table.
CONNECT BY PRI OR nanager id = enpl oyee_id

The PRI OR operator does not necessarily need to be coded immediately following the CONNECT
BY. Thus, the following CONNECT BY PRI OR clause givesthe same result asthe onein the
preceding example.

CONNECT BY enpl oyee id = PRIOR nanager _id
Note: The CONNECT BY clause cannot contain a subquery.

Introduction to Oracle9i: SQL 19-7



Walking the Tree: From the Bottom Up

SELECT enpl oyee _id, |ast_nane, job_id, manager_id
FROM  enpl oyees

START WTH enployee_id = 101

CONNECT BY PRI OR manager _id = enpl oyee_id

| EMPLOYEE_ID | LAST_NAME | JOB_ID | MANAGER_ID
| 101 [Kochhar [aD_wP | 100
| 100 [King [AD_PRES |

19-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Walking the Tree: From the Bottom Up

The examplein the dide displays alist of managers starting with the employee whose employee ID is
101.

Example

In the following example, EMPLOYEE | D values are evaluated for the parent row and
MANAGER | D, and SALARY values are evaluated for the child rows. The PRI OR operator applies
only to the EMPLOYEE_| Dvalue.

CONNECT BY PRI OR enpl oyee _id = manager _id
AND sal ary > 15000;

To qualify asachild row, arow must have a MANAGER | D value equa to the EMPLOYEE _| Dvalue
of the parent row and must have a SALARY value greater than $15,000.

Instructor Note

In the context of the first paragraph, you may wish to include here that the hierarchy will be
established to the furthest extremity before the next parent row is evaluated.

In the context of the second paragraph, you may wish to include that additional conditions added to
the CONNECT BY PRI OR clause potentially eliminated the whole of the branch, hence the
EMPLOYEE | DAND SALARY are evaluated for the parent row to determineif it isto be part of the
output.

Introduction to Oracle9i: SQL 19-8




Walking the Tree: From the Top Down

SELECT Ilast_nane||’ reports to '|]|
PRIOR last_nanme "Wal k Top Down"
FROM enpl oyees

START WTH |l ast_nane = ’'King’
CONNECT BY PRI OR enpl oyee_id = manager _id|;

| Walk Top Down
|King reports to

|Kochhar reports to King
|Wha|en reparts to Kochhar
|Higgins reports to Kochhar

|Zlotkey reports to King
|Ahe| reports to Zlotkey
|Tay|0r reports to Zlotkey

|Grant reports to Zlotkey

|Hartstein reports to King

|Fay reports to Hartstein

20 rows selected.

19-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Walking the Tree: From the Top Down

Walking from the top down, display the names of the employees and their manager. Use employee
King asthe starting point. Print only one column.

Introduction to Oracle9i: SQL 19-9



Ranking Rows with the LEVEL
Pseudocolumn
Level 1
root/parent
King Level 2
parent/child
Kochhar De Hann Mourgos Zlotkey Hartstein
Level 3
o | | parent/child
Whalen Higgins Hunold  pajs pavies Matos Vargas /leaf
—— | |
) Abel Taylor Grant Level 4
Gletz grpgt Lorentz I;zlaf

‘ 19-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Ranking Rows with the LEVEL Pseudocolumn

Y ou can explicitly show the rank or level of arow in the hierarchy by using the LEVEL
pseudocolumn. Thiswill make your report more readable. The forks where one or more branches
split away from alarger branch are called nodes, and the very end of abranchis called aleaf, or leaf
node. The diagram in the dide shows the nodes of the inverted tree with their LEVEL values. For
example, employee Higgensis a parent and a child, while employee Daviesis a child and alezf.

The LEVEL Pseudocolumn

Value L evel

1 A root node

2 A child of aroot node

3 A child of achild, and so on

Note: A root nodeis the highest node within an inverted tree. A child nodeis any nonroot node. A
parent node is any node that has children. A leaf node is any node without children. The number of
levels returned by a hierarchical query may be limited by available user memory.

In the dide, King istheroot or parent (LEVEL = 1). Kochhar, De Hann, Mourgos, Zlotkey,
Hartstein, Higgens, and Hunold are children and also parents (LEVEL = 2). Whalen, Rgjs, Davies,
Matos, Vargas, Gietz, Ernst, Lorentz, Abel, Taylor, Grant, and Fay are children and leaves.

(LEVEL = 3 andLEVEL = 4)

Introduction to Oracle9i: SQL 19-10




Formatting Hierarchical Reports Using
LEVEL and LPAD

Create areport displaying company management
levels, beginning with the highest level and indenting
each of the following levels.

COLUWN org chart FORVAT Al2

SELECT |LPAD(| ast _nane, LENGIH(I|ast_nane) +(LEVEL*2)-2," )
AS org_chart

FROM  enpl oyees

START W TH | ast _nane=" Ki ng’

CONNECT BY PRI OR enpl oyee_i d=manager _i d

‘ 19-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Formatting Hierarchical Reports Using LEVEL

Thenodesin atree are assigned level numbers from the root. Use the L PAD function in conjunction
with the pseudocolumn LEVEL to display a hierarchical report as an indented tree.
In the example on the dlide:

e LPAD(char1,n [, char?2]) returnschar 1, left-padded to length n with the sequence of
charactersin char 2. The argument n isthetotal length of the return value asit is displayed on
your terminal screen.

« LPAD(l ast_nane, LENGTH(| ast nane)+(LEVEL*2)-2,’ ') definesthe display
format.

» char 1isthe LAST_NAME, n thetota length of the return value, islength of the LAST_NAME
+(LEVEL*2)-2 ,and char?2 is’ _’.

In other words, thistells SQL to take the LAST_NAME and left-pad it withthe’ ' character till the
length of the resultant string is equal to the value determined by

LENGTH( | ast _nane) +( LEVEL*2) - 2.

For King, LEVEL = 1.Hence, (2* 1) -2=2-2=0. So King does not get padded withany ’ _’
character and is displayed in column 1.

For Kochhar, LEVEL = 2.Hence, (2* 2)-2=4-2=2.So Kochhar gets padded with2"'
characters and is displayed indented.

Therest of the records in the EMPLOYEES table are displayed similarly.

Introduction to Oracle9i: SQL 19-11



Formatting Hierarchical Reports Using LEVEL (continued)

| ORG_CHART

|King

| Kachhar

Whalen

Higgins

Gietz

De Haan

Hunaold

Ernst

Larent z

hourgos

Rajs

Matos

____“argas

ORG_CHART

_ Zlotkey

bl

_ Taylar

Grant

Hartstein

L
|
|
_
|
I
L
|
| Davies
|
|
|
|
L
|
|
_
|

20 rows selected.

Introduction to Oracle9i: SQL 19-12



Pruning Branches
Use the WHERE clause Use the CONNECT BY clause
to eliminate a node. to eliminate a branch.
VHERE | ast _nanme != ' Hi ggins’ CONNECT BY PRI OR
enpl oyee_id = manager _i d
Kochhar AND | ast _nanme ! = 'Higgins’
Kochhar
Whalen ufs
Whalen iggi
Gietz
Gietz

19-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Pruning Branches

Y ou can use the WHERE and CONNECT BY clausesto prune thetree; that is, to control which nodes
or rows are displayed. The predicate you use acts as a Boolean condition.

Examples

Starting at the root, walk from the top down, and eliminate employee Higginsin the result, but
process the child rows.

SELECT departnent _id, enployee_id,|last_nanme, job_id, salary
FROM enpl oyees

WHERE last _name != 'Hi ggins’

START W TH manager _id |I'S NULL

CONNECT BY PRI OR enpl oyee_i d = nanager _i d;

Starting at the root, walk from the top down, and eliminate employee Higgins and al child rows.

SELECT departnent _id, enployee id,last _nanme, job id, salary
FROM enpl oyees

START W TH manager _id |I'S NULL

CONNECT BY PRI OR enpl oyee_id = nanager _id

AND | ast_nane != 'Hi ggins’;

Instructor Note
Y ou may wish to add here that using a WHERE clause to restrict a node could result in the hierarchy
not being reflected truly by the output.
Introduction to Oracle9i: SQL 19-13




Summary

In this lesson, you should have learned the following:

®* You can use hierarchical queries to view a
hierarchical relationship between rows in a table.

®* You specify the direction and starting point of
the query.

®* You can eliminate nodes or branches by pruning.

‘ 19-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Y ou can use hierarchical queriesto retrieve data based on a natural hierarchical relationship between
rowsin atable. The LEVEL pseudocolumn counts how far down a hierarchical tree you have
traveled. Y ou can specify the direction of the query using the CONNECT BY PRI ORclause. You
can specify the starting point using the START W TH clause. Y ou can use the WHERE and CONNECT
BY clauses to prune the tree branches.

Introduction to Oracle9i: SQL 19-14




Practice 19 Overview

This practice covers the following topics:

® Distinguishing hierarchical queries from
nonhierarchical queries

e Walking through a tree

®* Producing an indented report by using the LEVEL
pseudocolumn

®* Pruning the tree structure
® Sorting the output

‘ 19-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 19 Overview

In this practice, you gain practical experiencein producing hierarchical reports.
Paper-Based Questions

Question 1 is a paper-based question.

Introduction to Oracle9i: SQL 19-15




Practice 19

1. Look at the following outputs. Are these outputs the result of ahierarchical query? Explain

why or why not.

Exhibit 1:

| EMPLOYEE ID | LAST NAME | MANAGER ID | SALARY | DEPARTMENT ID

| 100 | |King | | 24000 | a0

| 101 |[Kochhar | 00| 17000 | a0

| 102 ||De Haan | 100 | 17000 | a0

| 201 |Hartstein | 100 13000 | 20

| 205 |Higgins | 101 | 12000 | 110

| 174 || Abel | 143 | 11000 | a0

| 149 ||Zlatkey | 100 | 10500 | a0

| 103 |[Hunald | 102 | 9000 | B0

| 200 [Whalen | 101 | 4400 | 10

| 107 |Laorentz | 103 | 4200 | B0

| 141 |Rajs | 124 | 3500 | 50

| 142 |Davies | 124 | 3100 | 50

| 143 |Matos | 124 | 2600 | 50

| 144 [Vargas | 124 | 2500 | 50
20 rows selected.

Exhibit 2:

| EMPLOYEE ID | LAST NAME | DEPARTMENT ID | DEPARTMENT NAME

| 205 |Higgin5 | 110 |Accnunting

| 206 |Gietz | 110 | |Accounting

| 100 |King | 90 |Executive

| 101 |K|:u:hhar | 50 |E}{ecutive

| 102 |De Haan | =l |Executive

| 143 |Zlotkey | A0 |Sales

| 174 | Abel | a0 |Sales

| 176 |Taylor | A0 |Sales

| 103 ||Hunold | B0 |IT

| 104 |[Ermst | B0 |IT

| 107 ||Larentz | B0 |IT

11 rows selected.

Introduction to Oracle9i: SQL 19-16




Practice 19 (continued)

Exhibit 3:
| RANK | LAST _NAME
| 1 |King
| 2 |K|:u:hhar
| 2 |De Haan
| 3 [Hunold
| 4 |Ern5t

2. Produce areport showing an organization chart for Mourgos' s department. Print last names,
salaries, and department 1Ds.

| LAST_NAME |  SALARY | DEPARTMENT _ID

IMourgos | 5800 | 50
Rajs | 3500 | a0
Davies | 3100 | 50
IMatos | 2600 | 50
MWargas | 2600 | 50

3. Create areport that shows the hierarchy of the managers for the employee Lorentz. Display
hisimmediate manager first.

| LAST NAME
|Hunu:u|d

|De Haan

|King

Introduction to Oracle9i: SQL 19-17



Practice 19 (continued)

4.

Create an indented report showing the management hierarchy starting from the employee whose
LAST_NAME is Kochhar. Print the employee’ s last name, manager 1D, and department ID.
Give dias names to the columns as shown in the sample output.

| NAME | MGR | DEPTNO

\Kochhar | 100 | a0
|__Whalen | 101 | 10
| Higgins | 101 | 110
| Gietz | 205 | 110

If you have time, complete the following exercise:

5.

Produce a company organization chart that shows the management hierarchy. Start with the
person at the top level, exclude al people with ajob ID of | T_PROG, and exclude De Haan
and those employees who report to De Haan.

| LAST _NAME | EMPLOYEE_ID | MANAGER_ID

King | 100 |

IKochhar | 101 | 100
yhalen | 200 | 101
Higgins | 205 | 101
Gietz | 206 | 206
IMourgos | 124 | 100
Rajs | 141 | 124
Davies | 142 | 124
IMatos | 143 | 124
Margas | 144 | 124
Zlotkey | 143 | 100
bl | 174 | 143
Taylar | 176 | 149
|Grant | 178 || 143
| LAST _NAME | EMPLOYEE_ID | MANAGER_ID
Hartstein | 201 | 100
Fay | 202 | 201

16 rows selected.

Introduction to Oracle9i: SQL 19-18



Oracle9i Extensions to
DML and DDL Statements

ORACLE
Copyright © Oracle Corporation, 2001. All rights reserved.

Schedule: Timing Topic
40 minutes Lecture
30 minutes Practice

70 minutes Totd




Objectives

After completing this lesson, you should be able to
do the following:

Describe the features of multitable inserts
Use the following types of multitable inserts
— Unconditional | NSERT

— Pivoting | NSERT

— Conditional ALL | NSERT

— Conditional FI RST | NSERT

Create and use external tables

Name the index at the time of creating a primary
key constraint

Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

This lesson addresses the Oracle9i extensionsto DDL and DML statements. It focuses on multitable
| NSERT statements, types of multitable | NSERT statements, external tables, and the provision to
name the index at the time of creating a primary key constraint.

Introduction to Oracle9i: SQL 20-2




Review of the | NSERT Statement

* Add new rows to atable by using the | NSERT
statement.

| NSERT INTO table [(colum [, colum...])]
VALUES (value [, value...]);

®* Only onerow is inserted at a time with this syntax.

I NSERT | NTO depart nent s(depart nment i d, departnent_nane,
manager _id, |ocation_id)

VALUES (70, 'Public Relations’, 100, 1700);

1 row created.

20-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Review of the | NSERT Statement
Y ou can add new rowsto atable by issuing the | NSERT statement.

In the syntax:
tabl e isthe name of the table
col um is the name of the column in the table to populate
val ue is the corresponding value for the column

Note: This statement with the VALUES clause adds only one row at atimeto atable.

Instructor Note
You can skip this dideif the students are already familiar with these concepts.

Introduction to Oracle9i: SQL 20-3




Review of the UPDATE Statement

* Modify existing rows with the UPDATE statement.

UPDATE tabl e
SET colum = value [, colum = val ue,

[ WHERE condition];

®* Update more than one row at a time, if required.

® Specific row or rows are modified if you specify
the WHERE clause.

UPDATE enpl oyees

SET departnment _id = 70
VWHERE enpl oyee_id = 142,
1 row updat ed.

20-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Review of the UPDATE Statement
Y ou can modify existing rows by using the UPDATE statement.

In the syntax:
tabl e isthe name of the table
col um is the name of the column in the table to populate
val ue isthe corresponding value or subquery for the column
condi tion identifies the rows to be updated and is composed of column names

expressions, constants, subqueries, and comparison operators
Confirm the update operation by querying the table to display the updated rows.

Instructor Note
Y ou can skip this dide if the students are already familiar with these concepts.

Introduction to Oracle9i: SQL 20-4



Overview of Multitable | NSERT Statements

® The | NSERT. .. SELECT statement can be used to
insert rows into multiple tables as part of a single
DML statement.

* Multitable | NSERT statements can be used in data

warehousing systems to transfer data from one or
more operational sources to a set of target tables.

®* They provide significant performance
improvement over:

— Single DML versus multiple | NSERT. . . SELECT
statements

— Single DML versus a procedure to do multiple
inserts using | F. . . THEN syntax

20-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of Multitable | NSERT Statements

Inamultitable | NSERT statement, you insert computed rows derived from the rows returned from
the evauation of a subquery into one or more tables.

Multitable | NSERT statements can play a very useful role in a data warehouse scenario. Y ou need to
load your data warehouse regularly so that it can serve its purpose of facilitating business analysis. To
do this, datafrom one or more operational systems needsto be extracted and copied into the
warehouse. The process of extracting data from the source system and bringing it into the data
warehouse is commonly called ETL, which stands for extraction, transformation, and loading.

During extraction, the desired data has to be identified and extracted from many different sources,
such as database systems and applications. After extraction, the data has to be physically transported
to the target system or an intermediate system for further processing. Depending on the chosen means
of transportation, some transformations can be done during this process. For example, a SQL
statement that directly accesses a remote target through a gateway can concatenate two columns as
part of the SELECT statement.

Once datais|oaded into an Oracle9i, database, data transformations can be executed using SQL
operations. With Oracle9i multitable | NSERT statements is one of the techniques for implementing
SQL datatransformations.

Introduction to Oracle9i: SQL 20-5



Overview of Multitable Insert Statements (continued)

Multitable | NSERTS statement offer the benefits of thel NSERT ... SELECT statement when
multiple tables are involved as targets. Using functionality prior to Oracle9i, you had to deal with n
independent | NSERT ... SELECT statements, thus processing the same source data n times and

increasing the transformation workload n times.

Aswiththeexisting | NSERT ... SELECT statement, the new statement can be paralldized and
used with the direct-load mechanism for faster performance.

Each record from any input stream, such as a nonrelational database table, can now be converted into

multiple records for more relational database table environment. To implement this functionality
before Oracl€9i, you had to write multiple | NSERT statements.

Introduction to Oracle9i: SQL 20-6



Types of Multitable | NSERT Statements

Oracle9i introduces the following types of multitable insert
statements:

* Unconditional | NSERT

e Conditional ALL | NSERT

* Conditional FI RST | NSERT
* Pivoting | NSERT

20-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Multitable | NSERT Statements
Oracle 9i introduces the following types of multitable | NSERT statements:
e Unconditional | NSERT
e Conditional ALL | NSERT
e Conditional FI RST | NSERT
* Pivoting | NSERT
Y ou use different clauses to indicate the type of | NSERT to be executed.

Introduction to Oracle9i: SQL 20-7



Multitable | NSERT Statements

Syntax

| NSERT [ ALL] [conditional _insert_cl ause]
[insert _into_clause val ues_cl ause] (subquery)

condi tional _insert_cl ause

[ ALL] [ FIRST]
[ WHEN condition THEN] [insert_into_clause val ues_cl ause]
[ELSE] [insert _into_clause val ues_cl ause]

20-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Multitable | NSERT Statements

The dlide displays the generic format for multitable | NSERT statements. There are four types of
multitable insert statements.

* Unconditional | NSERT
» Conditional ALL | NSERT
» Conditiona FI RST | NSERT
e Pivoting | NSERT
Unconditional | NSERT: ALL i nt o_cl ause

Specify ALL followed by multiplei nsert i nt o_cl auses to perform an unconditional
multitable insert. The Oracle Server executeseachi nsert i nt o_cl ause oncefor each row
returned by the subquery.

Conditional | NSERT: condi ti onal _i nsert _cl ause

Specify thecondi ti onal _i nsert _cl ause to perform a conditional multitable insert. The
Oracle Server filterseach i nsert _i nt o_cl ause through the corresponding WHEN condition,
which determines whether that i nsert _i nt o_cl ause isexecuted. A single multitable insert
statement can contain up to 127 WHEN clauses.

Conditional | NSERT: ALL

If you specify ALL, the Oracle Server evaluates each WHEN clause regardless of the results of the
evaluation of any other WHEN clause. For each VWHEN clause whose condition eva uates to true, the
Oracle Server executes the corresponding | NTOclause list.

Introduction to Oracle9i: SQL 20-8



Multitable | NSERT Statements (continued)
Conditional FI RST: | NSERT

If you specify FI RST, the Oracle Server evaluates each WHEN clause in the order in which it appears
in the statement. If the first WHEN clause evaluatesto true, the Oracle Server executes the
corresponding | NTO clause and skips subsequent WHEN clauses for the given row.

Conditional | NSERT: ELSE Clause
For agiven row, if no WHEN clause evauates to true:

» If you have specified an ELSE, clause the Oracle Server executesthe | NTOclause list
associated with the ELSE clause.

» If you did not specify an EL SE clause, the Oracle Server takes no action for that row.
Restrictionson Multitable| NSERT Statements

* You can perform multitable inserts only on tables, not on views or materialized views.

* You cannot perform a multitable insert into aremote table.

* You cannot specify atable collection expression when performing a multitable insert.

e Inamultitableinsert, dl of thei nsert i nt o_cl auses cannot combine to specify more
than 999 target columns.

Introduction to Oracle9i: SQL 20-9



Unconditional | NSERT ALL

* Select the EMPLOYEE | D, H RE_DATE, SALARY, and
MANAGER | Dvalues from the EMPLOYEES table for
those employees whose EMPLOYEE | Dis greater
than 200.

®* |Insert these values into the SAL_HI STORY and
MER_HI STORY tables using a multitable | NSERT.

| NSERT [ALL |
| NTO sal _hi story VALUES(EMPI D, H REDATE, SAL)
| NTO ngr _hi story VALUES( EMPI D, MGR, SAL)
SELECT enpl oyee_id EMPI D, hire_date H REDATE,
salary SAL, manager _id MR
FROM enpl oyees
VWHERE enpl oyee_id > 200;
8 rows creat ed.

20-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Unconditional | NSERT ALL

The example in the dide inserts rows into both the SAL_HI STORY and the MGR_HI STORY tables.
The SELECT statement retrieves the details of employee ID, hire date, salary, and manager 1D of
those employees whose employee ID is greater than 200 from the EMPLOYEES table. The details of
the employee ID, hire date, and salary areinserted into the SAL_HI STORY table. The details of
employee ID, manager ID and salary areinserted into the MGR_HI STORY table.

This| NSERT statement is referred to as an unconditional | NSERT, as no further restriction is applied
to the rowsthat are retrieved by the SELECT statement. All the rows retrieved by the SELECT
statement are inserted into the two tables, SAL_HI STORY and MGR_HI STORY. The VALUES clause
inthel NSERT statements specifies the columns from the SELECT statement that have to be inserted
into each of the tables. Each row returned by the SELECT statement results in two insertions, one for
the SAL_HI STORY table and one for the MGR_HI STCRY table.

Thefeedback 8 rows cr eat ed can beinterpreted to mean that atotal of eight insertions were
performed on the base tables SAL_HI STORY and MGR_HI STORY.

Instructor Note

In order to demonstrate the code example in the dide, you must first run the script files
| ab\cre_sal history.sqgl andl ab\cre_ngr_hi story. sql , which create the
SAL_HI STORY and MGR_HI STORY tables.

Introduction to Oracle9i: SQL 20-10



Conditional | NSERT ALL

* Select the EMPLOYEE | D, H RE_DATE, SALARY and
MANAGER | Dvalues from the EMPLOYEES table for
those employees whose EMPLOYEE | Dis greater
than 200.

* If the SALARY is greater than $10,000, insert these
values into the SAL_HI STORY table using a
conditional multitable | NSERT statement.

* |f the MANAGER I Dis greater than 200, insert these
values into the MGR_HI STORY table using a
conditional multitable | NSERT statement.

20-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Conditional | NSERT ALL

The problem statement for a conditional | NSERT ALL statement is specified in the dide. The
solution to the preceding problem is shown in the next page.

Introduction to Oracle9i: SQL 20-11



Conditional | NSERT ALL

| NSERT ALL
[WHEN] SAL > 10000
I NTO sal _hi story VALUES(EMPI D, H REDATE, SAL)
VFEN|VGR > 200
I NTO ngr _hi story VALUES( EMPI D, MGR, SAL)
SELECT enpl oyee_id EMPI D, hire_dat e H REDATE,
salary SAL, manager id MGR
FROM  enpl oyees
WHERE enpl oyee_id > 200;
4 rows creat ed.

20-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Conditional | NSERT ALL (continued)

The example in the dide is similar to the example on the previous dide asit inserts rows into both the
SAL_HI STORY and the MGR_HI STCRY tables. The SELECT statement retrieves the details of
employee ID, hire date, salary, and manager 1D of those employees whose employee ID is greater
than 200 from the EMPLOYEES table. The details of employee ID, hire date, and salary are inserted
into the SAL_HI STORY table. The details of employee ID, manager ID, and salary areinserted into
the MGR_HI STORY table.

This| NSERT statement isreferred to as aconditional ALL | NSERT, as afurther restriction is
applied to the rows that are retrieved by the SELECT statement. From the rows that are retrieved by
the SELECT statement, only those rows in which the value of the SAL column is more than 10000 are
inserted inthe SAL_HI STORY table, and similarly only those rows where the value of the MGR
column is more than 200 are inserted in the MGR_HI STORY table.

Observe that unlike the previous example, where eight rows were inserted into the tables, in this
example only four rows are inserted.

Thefeedback 4 rows cr eat ed can beinterpreted to mean that atota of four inserts were
performed on the base tables, SAL_HI STORY and MGR_HI STCRY.

Introduction to Oracle9i: SQL 20-12



Conditional FI RST | NSERT

e Select the DEPARTMENT | D, SUM SALARY) and
MAX( Hl RE_DATE) from the EMPLOYEES table.

* |f the SUM SALARY) is greater than $25,000 then
insert these values into the SPECI AL_SAL, using a
conditional FI RST multitable | NSERT.

* | If the first WHEN clause evaluates to true, the
subsequent WHEN clauses for this row should be
skipped.

* For the rows that do not satisfy the first WHEN
condition,insert into the HI REDATE_HI STORY_00,
or H REDATE_HI STORY_99, or H REDATE_HI STORY
tables, based on the value in the H RE_DATE
column using a conditional multitable | NSERT.

20-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Conditional FI RST | NSERT

The problem statement for a conditional FI RST | NSERT statement is specified in the dide. The
solution to the preceding problem is shown on the next page.

Introduction to Oracle9i: SQL 20-13



Conditional FI RST | NSERT
| NSERT [FI RST ]

VWHEN SAL > 25000 THEN

I NTO speci al _sal VALUES(DEPTI D, SAL)
VWHEN HI REDATE |ike (' %0% ) THEN

I NTO hiredate_history 00 VALUES(DEPTI D, H REDATE)
VWHEN HI REDATE |ike (' 9%99% ) THEN

I NTO hiredate_history 99 VALUES(DEPTI D, H REDATE)
ELSE
I NTO hiredate_history VALUES(DEPTI D, H REDATE)
SELECT departnent _id DEPTI D, SUM sal ary) SAL,

MAX( hi re_date) H REDATE
FROM  enpl oyees
GROUP BY departnent _id;
8 rows creat ed.

20-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Conditional FI RST | NSERT (continued)

The example in the dide inserts rows into more than one table, using one single | NSERT statement.
The SELECT statement retrieves the details of department 1D, total salary, and maximum hire date for
every department in the EMPLOYEES table.

This| NSERT statement is referred to as aconditional FI RST | NSERT, as an exception is made for
the departments whose total salary is more than $25,000. The condition WHEN ALL > 25000 is
evaluated first. If the total salary for a department is more than $25,000, then the record is inserted
into the SPECI AL_SAL table irrespective of the hire date. If this first WHEN clause evaluates to true,
the Oracle Server executes the corresponding | NTO clause and skips subsequent WHEN clauses for
this row.

For the rows that do not satisfy the first WHEN condition (WHEN SAL > 25000), therest of the
conditions are evaluated just as a conditional | NSERT statement, and the records retrieved by the
SELECT statement are inserted into the H REDATE_HI STORY_00, or H REDATE_HI STORY_99,
or H REDATE_HI STORY tables, based on the value in the Hl REDATE column.

Thefeedback 8 rows cr eat ed can beinterpreted to mean that atota of eight | NSERT
statements were performed on the base tables SPECI AL_SAL ,HI REDATE_HI STORY_00,

HI REDATE_HI STORY_99, and H REDATE_HI STORY.

Instructor Note

In order to demonstrate the code example in the dide, you must first run the script files
| ab\cre_special _sal.sqgl, lab\cre_hiredate_hi story 99. sql
| ab\cre_hiredate_history_00.sqgl andl ab\cre_hiredate_history. sql

Introduction to Oracle9i: SQL 20-14



Pivoting | NSERT

® Suppose you receive a set of sales records from a
nonrelational database table,
SALES SOURCE_DATAn the following format:

EMPLOYEE | D, WEEK_| D, SALES MON,
SALES TUE, SALES WED, SALES THUR
SALES FRI

* You would want to store these records in the
SALES | NFOtable in a more typical relational

format:
EMPLOYEE | D, WEEK, SALES

® Using a pivoting | NSERT, convert the set of sales
records from the nonrelational database table to
relational format.

20-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Pivoting | NSERT

Pivoting is an operation in which you need to build atransformation such that each record from any
input stream, such as, a nonrelational database table, must be converted into multiple records for a
more relationa database table environment.

In order to solve the problem mentioned in the dlide, you need to build a transformation such that each
record from the original nonreational database table, SALES SOURCE_DATA, is converted into five
records for the data warehouse's SALES | NFOtable. This operation is commonly referred to as
pivoting.

The problem statement for a pivoting | NSERT statement is specified in the dide. The solution to the
preceding problem is shown in the next page.

Introduction to Oracle9i: SQL 20-15



Pivoting | NSERT

| NSERT ALL

5 rows created.

I NTO|sal es_I nt o] VALUES (enpl oyee_id, week_i d, sal es_MON)

I NTO|sal es_i nf ol VALUES (enpl oyee_id, week_i d, sal es_TUE)

| NTO|sal es_i nf ol VALUES (enpl oyee_i d, week_i d, sal es_\VED)

I NTO|sal es_i nf o| VALUES (enpl oyee_i d, week_i d, sal es_THUR)

I NTO|sal es_i nf o| VALUES (enpl oyee_id, week_i d,

SELECT EMPLOYEE_|I D, week_i d,
sal es WD, sal es THUR, sal es_FRI

FROM sal es_source_dat a;

sal es_MON, sal es_TUE,

sal es_FRI)

20-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Pivoting | NSERT (continued)

In the example in the dide, the sales data is received from the nonrelational database table
SALES SOURCE_DATA, which isthe details of the sales performed by a sales representative on each
day of aweek, for aweek with a particular week ID.

DESC SALES SCURCE_DATA

| Name | Null? | Type
[EMPLOYEE_ID | INUMBER(E)
WWEEK_ID | INUMBER(2)
|SALES_MON | INUMBER(B 2)
|SALES_TUE | INUMBER(S 2)
|SALES WED | INUMBER(S ,2)
|SALES_THUR | INUMBER(S 2)
|SALES_FRI | INUMBER(S 2)

Instructor Note

In order to demonstrate the code example in the dide, you must first run the script files
| ab\cre_sal es_source_data.sqgl, lab\cre_sal es_info.sgl and
| ab\ popul _sal es_source_dat a. sql .

Introduction to Oracle9i: SQL 20-16



Pivoting | NSERT (continued)
SELECT * FROM SALES_SOURCE_DATA;

[EMPLOYEE_ID \WEEK_ID [SALES_MON |SALES_TUE |SALES_WED SALES_THUR SALES_FRI
| 176 | 6| 2000 | 3000 | 4000 | 5000 | BO00

DESC SALES | NFO

| Name | Null? | Type
[EMPLOYEE_ID | INUMBER(E)
WWEEK | INUMBER(2)
|SALES | IMUMBER(S 2)

SELECT * FROM sal es_i nfo;
| EMPLOYEE_ID | WEEK | SALES
| 176 | | 2000
| 176 | | 3000
| 176 | 6| 4000
| 176 | | 5000
| 176 | | G000

Observein the preceding example that using a pivoting | NSERT, one row from the
SALES SOURCE_DATAtableis converted into five records for the relational table, SALES | NFQO.

Introduction to Oracle9i: SQL 20-17



External Tables

* External tables are read-only tables in which the
data is stored outside the database in flat files.

* The metadata for an external table is created
using a CREATE TABLE statement.

* With the help of external tables, Oracle data can
be stored or unloaded as flat files.

* The data can be queried using SQL, but you
cannot use DML and no indexes can be created.

20-18 Copyright © Oracle Corporation, 2001. All rights reserved.

External Tables

An externa table is aread-only table whose metadatais stored in the database but whose datais
stored outside the database. Using the Oracle9i external table feature, you can use external dataas a
virtual table. This data can be queried and joined directly and in paralldl without requiring the externa
datato befirst loaded in the database. Y ou can use SQL, PL/SQL, and Javato query the datain an
external table.

The main difference between external tables and regular tablesis that externally organized tables are
read-only. No DML operations (UPDATE, | NSERT, or DELETE) are possible, and no indexes can be
created on them.

The means of defining the metadata for externa tablesisthrough the CREATE TABLE . . .
ORGANI ZATI ON EXTERNAL statement. This external table definition can be thought of as aview
that is used for running any SQL query against external data without requiring that the external data
first be loaded into the database.

The Oracle Server provides two major access drivers for external tables. One, the loader access
driver, or ORACLE_LOADER, isused for reading of datafrom external files using the Oracle |oader
technology. This access driver allows the Oracle Server to access data from any data source whose
format can be interpreted by the SQL* Loader utility. The other Oracle provided access driver, the
import/export access driver, or ORACLE_| NTERNAL, can be used for both the importing and
exporting of data using a platform independent format.

Introduction to Oracle9i: SQL 20-18




Creating an External Table

e Usetheexternal table clause along with the
CREATE TABLE syntax to create an external table.

* Specify ORGANI ZATI ONas EXTERNAL to indicate
that the table is located outside the database.

* Theexternal table clause consists of the
access driver TYPE,
external data_properties, and the REJECT
LIMT.

* Theexternal data properties consistof the
following:

— DEFAULT DI RECTORY
— ACCESS PARAMETERS
— LOCATI ON

20-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an External Table

You create external tables using the ORGANI ZATI ON EXTERNAL clause of the CREATE TABLE
statement. Y ou are not in fact creating a table. Rather, you are creating metadata in the data dictionary
that you can use to access external data. The ORGANI ZATI ON clause |ets you specify the order in
which the data rows of the table are stored. By specifying EXTERNAL in the ORGANI ZATI ON
clause, you indicate that the table is aread-only table located outside the database.

TYPE access_dri ver _type indicatesthe accessdriver of the external table. The access driver
isthe Application Programming Interface (API) that interprets the external datafor the database. If
you do not specify TYPE, Oracle uses the default access driver, ORACLE L OQADER.

The REJECT LI M T clause lets you specify how many conversion errors can occur during a query
of the external data before an Oracle error isreturned and the query is aborted. The default valueisO.
DEFAULT DI RECTORY lets you specify one or more default directory objects corresponding to
directories on the file system where the external data sources may reside. Default directories can aso
be used by the access driver to store auxiliary files such as error logs. Multiple default directories are
permitted to facilitate |oad balancing on multiple disk drives.

The optional ACCESS PARAMETERS clause lets you assign values to the parameters of the specific
access driver for this external table. Oracle does not interpret anything in this clause. It isup to the
access driver to interpret thisinformation in the context of the external data.

The LOCATI ON clause lets you specify one external locator for each external data source. Usually the
| ocati on_specifier isafile, but it need not be. Oracle does not interpret this clause. It isup to
the access driver to interpret thisinformation in the context of the external data.

Introduction to Oracle9i: SQL 20-19




Example of Creating an External Table

Create a DI RECTORY object that corresponds to the
directory on the file system where the external
data source resides.

CREATE DI RECTORY enp_dir AS '/flat files' ;

20-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of Creating an External Table

Use the CREATE DI RECTORY statement to create a directory object. A directory object specifies an
aliasfor adirectory on the server's file system where an external data source resides. Y ou can use
directory names when referring to an external data source, rather than hard-code the operating system
pathname, for greater file management flexibility.

Y ou must have CREATE ANY DI RECTORY system privilegesto create directories. When you
create adirectory, you are automatically granted the READ object privilege and can grant READ
privilegesto other users and roles. The DBA can aso grant this privilege to other users and roles.

Syntax
CREATE [ OR REPLACE] DI RECTORY AS ' pat h_nane’;

In the syntax:

OR REPLACE  Specify OR REPLACE to re-create the directory database object if it
already exists. You can usethis clause to change the definition of an existing directory
without dropping, re-creating, and regranting database object privileges previoudy granted on
the directory. Users who had previousdly been granted privileges on a redefined directory can
still access the directory without being regranted the privileges.

directory Specify the name of the directory object to be created. The maximum
length of directory is 30 bytes. Y ou cannot qualify adirectory object with a schema name.

" pat h_nane’  Specify the full pathname of the operating system directory on the

result that the path name is case sensitive.

Introduction to Oracle9i: SQL 20-20



Example of Creating an External Table

CREATE TABLE ol denmp (
enpno NUMBER, enpnane CHAR(20), birthdate DATE)
ORGANI ZATI ON EXTERNAL
(TYPE ORACLE_LQADER
DEFAULT DI RECTORY enp_dir
ACCESS PARAMETERS
(RECORDS DELI M TED BY NEWLI NE
BADFI LE ’ bad_enp’
LOGHI LE ' | og_enp’
FI ELDS TERM NATED BY ' ,’
(empno CHAR
enmpnane CHAR,
birthdate CHAR date_format date mask "dd-non-yyyy"))
LOCATI ON (" empl.txt’))
PARALLEL 5
REJECT LIMT 200;
Tabl e creat ed.

20-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of Creating an External Table (continued)
Assume that there is aflat file that has records in the following format:
10, jones, 11- Dec- 1934
20,sm th, 12- Jun-1972

Records are delimited by new lines, and the fields are all terminated by a comma ( , ). The name of
thefileis:/flat _fil es/fenpl. txt

To convert thisfile as the data source for an externa table, whose metadata will reside in the
database, you need to perform the following steps:

1. Createadirectory object enp_di r as follows:
CREATE DI RECTORY enp_dir AS '/flat_files’ ;
2. Runthe CREATE TABLE command shown in the dide.

The example in the dideillustrates the table specification to create an externa table for thefile:
[flat _files/lenpl.txt

In the example, the TYPE specification is given only to illustrate its use. ORACLE_LOADERisthe
default access driver if not specified. The ACCESS PARAMETERS provide vaues to parameters of
the specific access driver and are interpreted by the access driver, not by the Oracle Server.

The PARALLEL clause enables five parallel execution serversto simultaneously scan the externa
data sources (files) when executing the | NSERT | NTO TABLE statement. For example, if
PARALLEL=5 were specified, then more that one parallel execution server could be working on a
data source. Because external tables can be very large, for performance reasonsit is advisable to
specify the PARALLEL clause, or aparalé hint for the query.

Introduction to Oracle9i: SQL 20-21




Example of Defining External Tables

The REJECT LI M T clause specifies that if more than 200 conversion errors occur during a query
of the external data, the query is aborted and an error returned. These conversion errors can arise
when the access driver tries to transform the datain the data file to match the external table definition.

Once the CREATE TABLE command executes successfully, the external table OLDEMP can be
described and queried like arelational table.

DESC ol denp
| Name | Hull? | Type
[EMPNO | INUMBER
[EMPHAME | \CHAR20)
[BIRTHDATE | IDATE

In the following example, the | NSERT | NTO TABLE statement generates a dataflow from the
external data source to the Oracle SQL engine where datais processed. As datais extracted from the
external table, it istransparently converted by the ORACLE _ LOADER access driver from its external
representation into an equivalent Oracle native representation. The | NSERT statement inserts data
from the external table OLDEMP into the Bl RTHDAYS table:

I NSERT | NTO bi rt hdays(enpno, enpnane, birthdate)
SELECT enpno, enpnane, birthdate
FROM ol denp;

2 rows created.

We can now select from the Bl RTHDAYS table.
SELECT * FROM bi rt hdays;

| EMPNO | EMPNAME | BIRTHDATE
| 10 jones 111-DEC-34
| 20 |smith 12-JUN-37

Instructor Note

To run the code example in the dide, do the following:
1. Login to unix teach account and type the following:
cd FLAT_FILES
pwd
The output should resemble/ horre#/ t each#/ FLAT_FI LES
2. Openthefilecre_dir. sgl fromthelab folder and replace the last command in the file with
the output from the unix pwd.
The last command in the file will now look like this:
CREATE OR REPLACE enp_dir as ’'<output from unix pwd>";
3. Savethefile cre dir.sgl and execute thisfileiniSQL*Plus
4. Runthecre_birthdays. sql scriptto createthe Bl RTHDAYS table.

Introduction to Oracle9i: SQL 20-22



Querying External Tables

SELECT *
FROM ol denp

Y

A

empl.txt

20-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Querying External Table

An externa table does not describe any data that is stored in the database. Nor does it describe how
datais stored in the external source. Instead, it describes how the externa table layer needs to present
the datato the server. It isthe responsibility of the access driver and the external table layer to do the
necessary transformations required on the datain the data file so that it matches the external table
definition.

When the database server needs to access data in an external source, it calls the appropriate access
driver to get the data from an externa source in aform that the database server expects.

It isimportant to remember that the description of the datain the data source is separate from the
definition of the external table. The source file can contain more or fewer fields than there are
columnsin thetable. Also, the datatypes for fields in the data source can be different from the
columns in the table. The access driver takes care of ensuring the data from the data sourceis
processed so that it matches the definition of the external table.

Introduction to Oracle9i: SQL 20-23




CREATE | NDEX with CREATE TABLE Statement

CREATE TABLE NEW EMP
(enpl oyee_i d NUVBER( 6)
PRI MARY KEY USI NG | NDEX
( CREATE | NDEX enp_id_idx ON
NEW EMP( enpl oyee_id)),
first_name VARCHAR2(20),
| ast_name  VARCHAR2(25));
Tabl e created.

SELECT | NDEX_NAME, TABLE_NAME
FROM  USER | NDEXES
VHERE TABLE_NAME = ' NEW EMP' ;

| INDEX_NAME | TABLE_NAME
[EMP_ID_IDx [NEW_EMP

20-24 Copyright © Oracle Corporation, 2001. All rights reserved.

CREATE | NDEX with CREATE TABLE Statement

In the example in the dide, the CREATE | NDEX clauseis used with the CREATE TABLE
statement to create a primary key index explicitly. Thisis an enhancement provided with Oracle9i.
Y ou can now name your indexes at the time of PRI MARY key creation, unlike before where the
Oracle Server would create an index, but you did not have any control over the name of the index.
The following exampleillustrates this:
CREATE TABLE EMP_UNNANMED | NDEX
(enpl oyee_id NUMBER(6) PRI MARY KEY ,
first_name VARCHAR2(20),
| ast _name VARCHARZ2(25));

Tabl e creat ed.
SELECT | NDEX_NANME, TABLE NANE
FROM  USER | NDEXES
VWHERE TABLE NAME = ' EMP UNNANMED | NDEX ;

| INDEX_NAME | TABLE_NAME
|S¥S_C002835 [EMP_UNMNAMED_INDEX

Observe that the Oracle Server gives a name to the Index that it creates for the PRI MARY KEY

column. But this name is cryptic and not easily understood. With Oracle9i, you can name your

PRI MARY KEY column indexes, as you create the table with the CREATE TABLE statement.

However, prior to Oracle9i, if you named your primary key constraint at the time of constraint

creation, the index would aso be created with the same name as the constraint name.
Introduction to Oracle9i: SQL 20-24



Summary

In this lesson, you should have learned how to:

®* Use the | NSERT..SELECT statement to insert rows
into multiple tables as part of a single DML statement

* Create external tables

* Name indexes using the CREATE | NDEX statement
along with the CREATE TABLE statement

20-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary
Oracle 9i introduces the following types of multitable | NSERT statements.
* Unconditional | NSERT
e Conditional ALL | NSERT
e Conditional FI RST | NSERT
e Pivoting | NSERT
Usetheext er nal _t abl e_cl ause to create an externd table, which is aread-only table whose

metadata is stored in the database but whose datais stored outside the database. Y ou can use external
tables to query data without first loading it into the database.

With Oraclegi, you can name your PRI MARY KEY column indexes as you create the table with the
CREATE TABLE statement.

Introduction to Oracle9i: SQL 20-25



Practice 20 Overview

This practice covers the following topics:

* Writing unconditional | NSERT statements

* Writing conditional ALL | NSERT statements
* Pivoting | NSERT statements

* Creating indexes along with the CREATE TABLE
command

20-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 20 Overview

In this practice, you write multitable inserts and use the CREATE | NDEX command at the time of
table creation, along with the CREATE TABLE command.

Introduction to Oracle9i: SQL 20-26




Practice 20
1. Runthecre_sal history. sql scriptinthelab folder to create the SAL_HI STORY table.
2. Display the structure of the SAL_HI STORY table.

| Name | Null? | Type
[EMPLOYEE_ID | INUMBERE)
IHIRE_DATE | IDATE

|SALARY | INUMBER(S 2)

3.Runthecre_ngr_history. sql scriptinthelabfolder to createthe MaR_HI STORY table.
4. Display the structure of the MGR_HI STORY table.

| Name | Null? | Type
[EMPLOYEE_ID | INUMBER(E)
IMANAGER_ID | INUMBER(B)
|SALARY | IMUMBER(S 2)

5.Runthecre_speci al _sal . sql scriptinthelab folder to create the SPECI AL_SAL table.
6. Display the structure of the SPECI AL_SAL table.

| Hame | Null? | Type
[EMPLOYEE_ID | INUMBER(E)
ISALARY | IMUMBER(B,2)

7. a. Write aquery to do the following:

— Retrieve the details of the employee ID, hire date, salary, and manager ID of those
employees whose employee ID is less than 125 from the EMPLOYEES table.

— If the sdary is more than $20,000, insert the details of employee ID and saary into the
SPECI AL_SAL table.

— Insert the details of employee ID, hire date, salary into the SAL_HI STORY table.

— Insert the details of the employee ID, manager ID, and salary into the MGR_HI STORY
table.

Introduction to Oracle9i: SQL 20-27



Practice 20 (continued)

b. Display the records from the SPECI AL_SAL table.

| EMPLOYEE_ID | SALARY
| 100 | 24000
c. Display the records from the SAL_HI STORY table.
| EMPLOYEE_ID | HIRE_DATE | SALARY
| 101 [21-5EP-89 | 17000
| 102 [13-JAN-93 | 17000
| 103 [03-JAN-90 | 9000
| 104 [21-MAY-31 | G000
| 107 |07-FEB-99 | 4200
| 124 [16-M0H-99 | 5800
B rowes selected.
d. Display the records from the MGR_HI STORY table.
| EMPLOYEE_ID | MANAGER_ID | SALARY
| 101 | 100 | 17000
| 102 | 100 | 17000
| 103 | 102 | 9000
| 104 | 103 | BO00
| 107 | 103 | 4200
| 124 | 100 | 5800

B rows selected.

Introduction to Oracle9i: SQL 20-28




Practice 20 (continued)

8.a Runthecre_sal es_source_dat a. sql scriptinthelab folder to create the
SALES SOURCE_DATA table.

b. Runthei ns_sal es_source_dat a. sql scriptinthelabfolder to insert recordsinto the
SALES SOURCE_DATAtable.

c. Display the structure of the SALES_SOURCE_DATA table.

| Name | Null? | Type
[EMPLOYEE_ID | INUMBERE)
WWEEK_ID | IMUMBER2)
|SALES_MON | IMUMBER(S 2)
ISALES_TUE | IMUMBER({S 2)
|SALES_WED | INUMBER(S 2)
|SALES_THUR | INUMBER(B 2)
|SALES_FRI | IMUMBER(S 2)

d. Display the records from the SALES_SOURCE_DATA table.

|EMPLOYEE_ID WEEK_ID |[SALES_MON |[SALES_TUE |SALES_WED [SALES_THUR [SALES_FRI
| 178 | 6 | 1750 | 2200 | 1500 | 1500 | 3000

e. Runthecre_sal es_i nf o. sql scriptinthelab folder to create the SALES | NFOtable.
f. Display the structure of the SALES | NFOtable.

| Hame | Mull? | Type
[EMPLOYEE_ID | IMUMBER(E)

WWEEK | INUMBER(2)

ISALES | IMUMBER(3,2)

Introduction to Oracle9i: SQL 20-29



Practice 20 (continued)
g. Write aquery to do the following:

Retrieve the details of employee ID, week ID, sales on Monday, sales on Tuesday, sales on
Wednesday, saleson Thursday, and sales on Friday from the SALES _SOURCE_DATA table.

Build atransformation such that each record retrieved from the SALES _SOURCE_DATA tableis
converted into multiple records for the SALES | NFOtable.

Hint: Useapivoting | NSERT statement.
h. Display the records from the SALES_| NFOtable.

| EMPLOYEE_ID | WEEK | SALES

| 178 | 6| 1750
| 178 || 6| 2200
| 178 | 5| 1500
| 178 || 6| 1500
| 178 | 5| 3000

9. a. Createthe DEPT_NAMED _| NDEX table based on the following table instance chart. Name the
index for the PRI MARY KEY column as DEPT_PK | DX.

COLUMN Name Deptno Dname
Primary Key Yes

Datatype Number VARCHAR2
Length 4 30

b. Query the USER | NDEXES tableto display the | NDEX NAME for the DEPT_NAMED | NDEX
table.

| INDEX_NAME | TABLE_NAME
IDEPT_PK_IDX IDEPT_MAMED_INDEX

Introduction to Oracle9i: SQL 20-30



A

Practice Solutions



Practice 1 Solutions
1. Initiate an iSQL* Plus session using the user ID and password provided by the instructor.

2. iSQL*Plus commands access the database.
False

3. Thefollowing SELECT statement executes successfully:
True

SELECT |l ast_nane, job_ id, salary AS Sal
FROM  enpl oyees;

4. Thefollowing SELECT statement executes successfully:
True

SELECT *
FROM j ob_grades;

5. Therearefour coding errorsin this statement. Can you identify them?

SELECT enpl oyee_id, |ast_nane
sal x 12 ANNUAL SALARY
FROM enpl oyees;

— The EMPLOYEES table does not contain a column called sal . Thecolumn iscalled
SALARY.

— Themultiplication operator is*, not x, asshown in line 2.

— The ANNUAL SALARY aliascannot include spaces. The alias should read
ANNUAL_ SALARY or be enclosed in double quotation marks.

— A commaismissing after the column, LAST_NANE.
6. Show the structure of the DEPARTMENTS table. Select all data from the DEPARTMVENTS table.

DESCRI BE depart nents
SELECT *
FROM departnents;

7. Show the structure of the EMPLOYEES table. Create a query to display the last name, job code,
hire date, and employee number for each employee, with employee number appearing first.
Provide an alias STARTDATE for the HIRE_DATE column. Save your SQL statement to afile
named| abl 7. sql.

DESCRI BE enpl oyees

SELECT enpl oyee id, last _nane, job id, hire date StartDate
FROM  enpl oyees;

Introduction to Oracle9i: SQL A-2



Practice 1 Solutions (continued)
8. Runyour query inthefilel abl_7. sql .
SELECT enpl oyee id, last_nanme, job id, hire date
FROM  enpl oyees;
9. Create aquery to display unique job codes from the EMPLOYEES table.

SELECT DI STINCT job_id
FROM  enpl oyees;

If you have time, compl ete the following exercises:
10. Copy the statement from| ab1_7. sql into theiSQL*Plus Edit window. Name the column
headingsEnp #, Enpl oyee, Job, and Hi r e Dat e, respectively. Run your query again.

SELECT enpl oyee_id "Enp #", |ast_nane "Enpl oyee",
job_id "Job", hire_date "Hire Date"
FROM  enpl oyees;

11. Display the last name concatenated with the job ID, separated by a comma and space, and name
the column Enpl oyee and Titl e.

SELECT last_nane||’, '||job_id "Enployee and Title"
FROM  enpl oyees;

If you want an extra challenge, compl ete the following exercise:

12. Create aquery to display al the data from the EMPLOYEES table. Separate each column by a
comma. Name the column THE_OUTPUT.

SELECT empl oyee id || ', || first_nane || ',’ || last_nane
1 ', || email || ',' || phone_nunber || *,’|| job_id
|1 ', || nanager _id || ', || hire_date || ", ||
salary || ', || commssion_pct || ’,’ || departnent_id
THE_QUTPUT

FROM  enpl oyees;

Introduction to Oracle9i: SQL A-3



Practice 2 Solutions

1.

2.

Create a query to display the last name and salary of employees earning more than $12,000.
Place your SQL statement in atext filenamed | ab2_1. sql . Run your query.

SELECT last_nane, salary
FROM enpl oyees
VWHERE salary > 12000;

Create a query to display the employee last name and department number for employee number
176.

SELECT | ast_nane, departnent _id
FROM enpl oyees
WHERE  enpl oyee_id = 176;

Modify | ab2_1. sql to display thelast name and salary for al employees whose salary is not
in the range of $5,000 and $12,000. Place your SQL statement in atext file named
| ab2_3.sql.

SELECT | ast_nane, salary
FROM enpl oyees
VHERE sal ary NOT BETWEEN 5000 AND 12000;

Display the employee last name, job ID, and start date of employees hired between February 20,
1998, and May 1, 1998. Order the query in ascending order by start date.

SELECT | ast _nane, job_id, hire_date

FROM enpl oyees

WHERE hi re_date BETWEEN ' 20- Feb-1998" AND ' 01- May- 1998’
ORDER BY hi re_dat e;

Introduction to Oracle9i: SQL A-4



Practice 2 Solutions (continued)

5. Display the last name and department number of all employeesin departments 20 and 50 in
alphabetica order by name.

SELECT |last_nane, departnent _id
FROM enpl oyees
VWHERE departnent _id IN (20, 50)
ORDER BY | ast_nane;

6. Modify | ab2_3. sql tolist thelast name and salary of employees who earn between $5,000
and $12,000, and are in department 20 or 50. Label the columns Enpl oyee and Mont hl y
Sal ary, respectively. Resavel ab2_3. sql asl ab2_6. sgl . Runthe statement in

| ab2_6. sql .

SELECT | ast_nane "Enpl oyee", salary "Monthly Sal ary”
FROM enpl oyees

VHERE sal ary BETWEEN 5000 AND 12000

AND departnent _id IN (20, 50);

7. Display the last name and hire date of every employee who was hired in 1994.

SELECT | ast_nane, hire_date
FROM enpl oyees
VWHERE hire date LIKE ' %94 ;

8. Display thelast name and job title of all employees who do not have a manager.

SELECT last_nane, job_id
FROM enpl oyees
VHERE manager _id IS NULL;

9. Display thelast name, salary, and commission for all employees who earn commissions. Sort
datain descending order of salary and commissions.

SELECT | ast_nane, salary, comission_pct
FROM enpl oyees

VWHERE commi ssion_pct |I'S NOT NULL

ORDER BY sal ary DESC, comm ssion_pct DESC,

Introduction to Oracle9i: SQL A-5



Practice 2 Solutions (continued)
If you have time, complete the following exercises.
10. Display thelast names of all employees where the third letter of the nameisan a.

SELECT | ast_name
FROM enpl oyees
VWHERE last_nane LIKE ' __ a%;

11. Display thelast name of all employees who have an a and an ein their last name.

SELECT | ast _nane

FROM enpl oyees

VWHERE | ast _nanme LIKE ' %%
AND | ast _nane LIKE ' %% ;

If you want an extra challenge, compl ete the following exercises:

12. Display thelast name, job, and salary for al employees whose job is sales representative or
stock clerk and whose sdary is not equal to $2,500, $3,500, or $7,000.

SELECT | ast _nane, job_id, salary

FROM enpl oyees

VHERE job_id IN ("SA REP, 'ST CLERK)
AND salary NOT IN (2500, 3500, 7000);

13. Modify | ab2_6. sql to display thelast name, salary, and commission for al employees
whose commission amount is 20%. Resavel ab2_6. sql asl ab2 13. sql . Rerun the
statement inl ab2_13. sql .

SELECT | ast _nane "Enpl oyee", salary "Monthly Sal ary",
commi ssi on_pct

FROM enpl oyees

WHERE commi ssion_pct = . 20;

Introduction to Oracle9i: SQL A-6



Practice 3 Solutions
1. Writeaquery to display the current date. Label the column Dat e.

SELECT sysdate "Date"
FROM dual ;

2. For each employee, display the employee number, last_name, sdlary, and salary increased by 15%
and expressed as a whole number. Label the column New Sal ar y. Place your SQL statement in
atext filenamed | ab3_2. sql .

SELECT enployee_id, last_nane, salary,
ROUND(sal ary * 1.15, 0) "New Sal ary"
FROM enpl oyees;

3. Runyour query inthefilel ab3_2. sql .

SELECT enployee_ id, |ast_nanme, salary,
ROUND(sal ary * 1.15, 0) "New Sal ary"
FROM enpl oyees;

4. Modify your query | ab3_2. sql to add acolumn that subtracts the old salary from
the new salary. Label the column | ncr ease. Save the contents of thefileas| ab3 4. sql .
Run the revised query.

SELECT enployee_id, last_nane, salary,
ROUND( sal ary * 1.15, 0) "New Sal ary",
ROUND( sal ary * 1.15, 0) - salary "Increase"

FROM enpl oyees;

5. Write aquery that displays the employee’slast names with the first letter capitalized and all other
letters lowercase and the length of the name for al employees whose name starts with J, A, or M.
Give each column an appropriate label. Sort the results by the employees’ last names.

SELECT I Nl TCAP(| ast _nane) "Name",
LENGTH( | ast _nane) "Length"

FROM enpl oyees

VWHERE | ast _nane LIKE *J%

OR | ast _nane LIKE ' M#®

OR | ast _nane LIKE 'A%

ORDER BY | ast _nane;

Introduction to Oracle9i: SQL A-7



Practice 3 Solutions (continued)

6.

For each employee, display the employee’slast name, and cal culate the number of months
between today and the date the employee was hired. Label the column MONTHS_WORKED. Order
your results by the number of months employed. Round the number of months up to the closest
whole number.

Note: Your results will differ.

SELECT | ast_nanme, ROUND( MONTHS BETWEEN

( SYSDATE, hire_date)) MONTHS WORKED
FROM enpl oyees
ORDER BY MONTHS_BETWEEN( SYSDATE, hire_date);

Write aquery that produces the following for each employee:
<enpl oyee | ast name> earns <salary> nonthly but wants <3 tines
sal ar y>. Label thecolumn Dr eam Sal ari es.
SELECT last _name || ' earns '’
|| TO CHAR(sal ary, ’fn%$99, 999.00’")
| * nonthly but wants ’
| TO CHAR(salary * 3, 'fn$99, 999.00")
| *.” "Dream Sal ari es"

|
|
|
enpl oyees;

FROM

If you have time, compl ete the following exercises:

8.

10.

Create aquery to display the last name and salary for al employees. Format the salary to be 15
characterslong, left-padded with $. Label the column SALARY.

SELECT | ast _nane,

LPAD(sal ary, 15, '$ ) SALARY
FROM enpl oyees;

Display each employee’ slast name, hire date, and salary review date, which isthe first Monday
after six months of service. Label the column REVI EW Format the dates to appear in the format
similar to “Monday, the Thirty-First of July, 2000.”

SELECT | ast _nane, hire_date,
TO _CHAR( NEXT_DAY(ADD MONTHS( hire_date, 6),’ MONDAY'),
"fnDay, "the" Ddspth "of" Mnth, YYYY') REVIEW
FROM enpl oyees;

Display the last name, hire date, and day of the week on which the employee started. Label
the column DAY. Order the results by the day of the week starting with Monday.

SELECT | ast _nane, hire_date,

TO CHAR(hire_date, 'DAY') DAY
FROM enpl oyees
ORDER BY TO CHAR(hire_date - 1, 'd);

Introduction to Oracle9i: SQL A-8



Practice 3 Solutions (continued)

If you want an extra challenge, compl ete the following exercises:

11. Create aquery that displays the employees’ last names and commission amounts. If an
employee does not earn commission, put “No Commission.” Label the column COVM

SELECT | ast _nane,
NVL( TO_CHAR( conmi ssion_pct), 'No Conmmi ssion’) COW
FROM enpl oyees;

12. Create aquery that displays the employees last names and indicates the amounts of their
annua salaries with asterisks. Each asterisk signifies athousand dollars. Sort the datain
descending order of salary. Labd the column EMPLOYEES AND THEI R_SALARI ES.

SELECT rpad(last_nanme, 8)||’ '|| rpad(’ ', salary/1000+1, '*')
EMPLOYEES_AND THEI R_SALARI ES
FROM enpl oyees

ORDER BY sal ary DESC;

13. Using the DECODE function, write a query that displays the grade of all employees based on the
value of the column JOB_I D, as per the following data:

JOB GRADE
AD PRES

ST_MAN

| T_PROG

SA REP

ST CLERK

None of the above

om®oOoO® >

SELECT job_id, decode (job_id,

'ST CLERK , 'FE,
' SA_REP' | D,
'IT_PROG, 'C,
' ST_MAN | B,
'AD PRES', 'A,
' 0’ ) GRADE

FROM enpl oyees;

Introduction to Oracle9i: SQL A-9



Practice 3 Solutions (continued)
14. Rewritethe statement in the preceding question using the CASE syntax.

SELECT job_id, CASE job_id
WHEN ' ST_CLERK' THEN ' FE
WHEN ' SA REP’ THEN ' D
VWHEN ' I T_PROG THEN ' C
VWHEN ’ ST_MAN THEN ’ B’
WHEN ' AD PRES' THEN ' A
ELSE '0° END GRADE

FROM enpl oyees;

Introduction to Oracle9i: SQL A-10



Practice 4 Solutions
1. Writeaquery to display the last name, department number, and department name for all
employees.
SELECT e.l ast_nane, e.departnent _id, d.departnment_nane

FROM enpl oyees e, departnents d
WHERE e. departnent _id = d.departnent _id;

2. Create auniquelisting of al jobsthat arein department 80. Include the location of the
department in the output.

SELECT DI STINCT job_id, location_id
FROM enpl oyees, departnents

WHERE enpl oyees. department _id
AND enpl oyees. departnent _id =

= departnents. departnent _id
80;

3. Write aquery to display the employee last name, department name, location ID, and city of al
employees who earn acommission.

SELECT e. | ast_nanme, d.departnment_nane, d.location_id, |.city
FROM enpl oyees e, departnents d, |ocations |

WHERE e. departnent _id = d.departnent _id

AND

d.location_id =1.location_id

AND e. conmmi ssion_pct |I'S NOT NULL;

4. Display the employee last name and department name for all employees who have an a
(lowercase) in their last names. Place your SQL statement in atext filenamed | ab4_4. sql .

SELECT | ast _name, departnent _nane

FROM enpl oyees, departnents

WHERE enpl oyees. departnent _id = departnents. departnent _id
AND | ast _name LI KE ' %% ;

Introduction to Oracle9i: SQL A-11



Practice 4 Solutions (continued)

5. Write aquery to display the last name, job, department number, and department name for al
employees who work in Toronto.

SELECT e.last_nane, e.job_id, e.departnent_id,
d. depart ment _nane

FROM enpl oyees e JO N departnents d

ON (e.departnment _id = d.departnent _id)

JO N | ocations |

ON (d.location_id =

VWHERE LOVER(I . city)

.location_id)
"toronto’;

6. Display the employee last name and employee number along with their manager’ s last name and
manager number. Label the columns Enpl oyee, Enp#, Manager , and Myr #, respectively.
Place your SQL statement in atext filenamed | ab4_6. sql .

SELECT w. | ast_nanme "Enpl oyee", w. enployee id "EMPH#",
m | ast _nane "Manager", menployee id "Mr#"

FROM enpl oyees w join enpl oyees m

ON (w. manager _id = m enpl oyee_i d);

Introduction to Oracle9i: SQL A-12



Practice 4 Solutions (continued)

7. Modify | ab4_6. sqgl todisplay al employeesincluding King, who has no manager.
Place your SQL statement in atext filenamed | ab4_7. sqgl . Runthequery inl ab4_7. sql
SELECT w. | ast_name "Enpl oyee", w. enployee_id "EM#",
m | ast _nanme " Manager", menployee_id "Myr#"
FROM enpl oyees w
LEFT OQUTER JA N enpl oyees m
ON (w. manager _id = m enpl oyee_i d);

If you have time, complete the following exercises.

8. Create aquery that displays employee last names, department numbers, and all the
employees who work in the same department as a given employee. Give each column an
appropriate label.

SELECT e.departnent _id departnent, e.last_nanme enpl oyee,
c.last _nane col |l eague

FROM enpl oyees e JO N enpl oyees ¢

N (e.departnent _id = c.departnent _id)

WHERE e.enployee_id <> c.enployee_id

ORDER BY e.departnent _id, e.last_nane, c.last_nane;

9. Show the structure of the JOB_GRADES table. Create a query that displays the name, job,
department name, salary, and grade for al employees.
DESC JOB_GRADES
SELECT e.last_name, e.job_id, d.departnent_nane,
e.salary, j.grade_level
FROM enpl oyees e, departnents d, job _grades |j
WHERE e.departnent _id = d.departnent _id
AND e.sal ary BETWEEN j .| owest _sal AND j. hi ghest _sal;

-- OR

SELECT e.l ast_name, e.job_id, d.departnent_nane,
e.salary, j.grade_ | evel

FROM enpl oyees e JO N departnents d

ON (e.departnent _id = d.departnent _id)

JON job_grades j
ON (e.salary BETWEEN j .| owest_sal AND j. hi ghest_sal);

Introduction to Oracle9i: SQL A-13



Practice 4 Solutions (continued)
If you want an extra challenge, compl ete the following exercises:
10. Create aquery to display the name and hire date of any employee hired after employee Davies.

SELECT e.last_name, e.hire_date

FROM enpl oyees e, enpl oyees davies
WHERE davi es. | ast_nane = 'Davi es’

AND davies.hire date < e.hire_date

-- OR

SELECT e.last_nanme, e.hire_date

FROM enpl oyees e JAO N enpl oyees davi es
ON (davi es.l ast _nane = 'Davies’)
WHERE davies.hire date < e.hire_date;

11. Display the names and hire dates for al employees who were hired before their managers, along
with their manager’ s names and hire dates. Labd the columns Enpl oyee, Enp
H red, Manager,and Mgr Hi r ed, respectively.

SELECT w. | ast_name, w.hire_date, mlast_name, mhire_date
FROM enpl oyees w, enpl oyees m

WHERE w. manager _id = m enpl oyee i d

AND w.hire date < mhire_date;

-- OR

SELECT w. | ast_name, w. hire_date, mlast_nanme, mhire_date
FROM enpl oyees w JO N enpl oyees m

ON (w. manager _id = m enpl oyee_id)

VWHERE w.hire date < mhire_date;

Introduction to Oracle9i: SQL A-14



Practice 5 Solutions
Determine the validity of the following three statements. Circle either True or False.

1. Group functions work across many rows to produce one result.
True

2. Group functionsinclude nullsin calculations.

False. Group functionsignore null values. If you want to include null values, usethe NVL
function.

3. The WHERE clause restricts rows prior to inclusion in agroup calculation.
True

4. Display the highest, lowest, sum, and average salary of all employees. Label the columns
Maxi mum M ni mum Sum and Aver age, respectively. Round your results to the nearest whole
number. Place your SQL statement in atext filenamed | ab5_6. sql .

SELECT  ROUND( MAX(sal ary), 0) "Maxi muni',
ROUND( M N(sal ary), 0) "M ni nuni,
ROUND( SUM sal ary), 0) "Suni,
ROUND( AVE sal ary), 0) "Aver age"
FROM enpl oyees;

5. Modify thequery inl ab5_4. sql to display the minimum, maximum, sum, and average salary for
eachjob type. Resavel ab5_ 6. sql tol ab5 4. sqgl . Runthestatementin| ab5_5. sql .

SELECT job_id, ROUND(MAX(sal ary), 0) "Maxinmuni,
ROUND(M N(sal ary), 0) "M ni nuni',
ROUND( SUM sal ary), 0) "Suni,
ROUND( AVE sal ary), 0) "Average"

FROM enpl oyees

GROUP BY job_id;

Introduction to Oracle9i: SQL A-15



Practice 5 Solutions (continued)
6. Write aquery to display the number of people with the same job.
SELECT  job_id, COUNT(*)
FROM enpl oyees
GROUP BY job_id;

7. Determine the number of managers without listing them. Label the column Nunber of
Manager s. Hint: Use the MANAGER | D column to determine the number of managers.

SELECT  COUNT( DI STI NCT manager _i d) "Nunber of Managers”
FROM enpl oyees;

8. Write aquery that displays the difference between the highest and lowest salaries. Label the
column DI FFERENCE.

SELECT MAX(sal ary) - M N(sal ary) DI FFERENCE
FROM enpl oyees;

If you have time, compl ete the following exercises.

9. Display the manager number and the salary of the lowest paid employee for that manager.
Exclude anyone whose manager is not known. Exclude any groups where the minimum
sdary is $6,000 or less. Sort the output in descending order of salary.

SELECT  rmanager _id, M N(sal ary)
FROM enpl oyees

WHERE manager _id |I'S NOT NULL
GROUP BY nmnager _id

HAVING M N(sal ary) > 6000
ORDER BY M N(sal ary) DESC,

10. Writeaquery to display each department’s name, location, number of employees, and the
average salary for al employeesin that department. Label the columns Nane, Locat i on,
Nunber of Peopl e, and Sal ary, respectively. Round the average salary to two decimal
places.

SELECT d.departnent_name "Nanme", d.location_id "Location",
COUNT(*) "Nunmber of People",
ROUND( AVE sal ary), 2) "Sal ary"

FROM enpl oyees e, departnents d

VWHERE e.departnment _id = d.departnent _id

GROUP BY d. departnent_nane, d.location_id;

Introduction to Oracle9i: SQL A-16



Practice 5 Solutions (continued)

If you want an extra challenge, compl ete the following exercises:

11.

12.

Create a query that will display the total number of employees and, of that total, the number of
employees hired in 1995, 1996, 1997, and 1998. Create appropriate column headings.

SELECT COUNT(*) total,
SUM DECODE( TO_CHAR( hi r e_dat e,
SUM DECODE( TO_CHAR( hi re_dat e,
SUM DECODE( TO_CHAR( hi re_dat e,
SUM DECODE( TO_CHAR( hi r e_dat e,
FROM enpl oyees;

), 1995, 1, 0)) " 1995",
), 1996, 1, 0)) " 1996"
), 1997, 1, 0)) " 1997",

Yy
VYYY
VYYY
' YYYY' ), 1998, 1, 0) ) " 1998"

Create amatrix query to display the job, the salary for that job based on department number, and
the total salary for that job, for departments 20, 50, 80, and 90, giving each column an appropriate
heading.

SELECT job_id "Job",
SUM DECODE(departnent _id , 20, salary)) "Dept 20",
SUM DECODE(departnent _id , 50, salary)) "Dept 50",
SUM DECODE( departnent _id , 80, salary)) "Dept 80",
SUM DECODE( departnent _id , 90, salary)) "Dept 90",
SUM sal ary) "Total "

FROM enpl oyees

GROUP BY job_id;

Introduction to Oracle9i: SQL A-17



Practice 6 Solutions

1. Writeaquery to display the last name and hire date of any employee in the same
department as Zlotkey. Exclude Zlotkey.

SELECT | ast_name, hire_date
FROM  enpl oyees
WHERE departnent _id = (SELECT departnent id
FROM  enpl oyees
WHERE | ast_nane = ' Zl otkey’)
AND | ast _nane <> ' Zl otkey’;

2. Create aquery to display the employee numbers and last names of al employeeswho earn more
than the average salary. Sort the resultsin ascending order of salary.

SELECT enpl oyee_id, |ast_nane

FROM  enpl oyees

WHERE sal ary > (SELECT AVQ sal ary)
FROM  enpl oyees)

ORDER BY sal ary;

3. Write aquery that displays the employee numbers and last names of all employees who work in a
department with any employee whose last name contains a u. Place your SQL statement in atext
filenamed | ab6_3. sql . Run your query.

SELECT enpl oyee i d, |ast_nane
FROM enpl oyees
WHERE department _id I N (SELECT departnent _id
FROM  enpl oyees
WHERE | ast_nane like ' %u%);

4. Digplay the last name, department number, and job ID of al employees whose department location
ID is 1700.

SELECT | ast _nanme, departnent_id, job_id
FROM  enpl oyees
WHERE departnment _id IN (SELECT departnent _id
FROM departnents
WHERE | ocation_id = 1700);

Introduction to Oracle9i: SQL A-18



Practice 6 Solutions (continued)
5. Display the last name and salary of every employee who reportsto King.

SELECT | ast_nanme, sal ary
FROM  enpl oyees
WHERE manager _id = ( SELECT enpl oyee_id
FROM  enpl oyees
WHERE last _nane = 'King');

6. Display the department number, last name, and job ID for every employee in the Executive
department.

SELECT departnent _id, last_nane, job_id
FROM  enpl oyees
WHERE departnment _id IN (SELECT departnent _id
FROM departnents
VWHERE departnent_nanme = ' Executive’);

If you have time, complete the following exercises:

7. Modify thequeryinl ab6_3. sql to display the employee numbers, last names, and salaries of
all employees who earn more than the average salary and who work in a department with any
employee with auin their name. Resavel ab6_3. sql tol ab6_7. sql . Run the statement in
| ab6_7. sql .

SELECT enpl oyee_id, |ast_nane, salary
FROM enpl oyees
WHERE department _id I N (SELECT departnent _id
FROM  enpl oyees
WHERE | ast_nane |ike * %% )
AND sal ary > (SELECT AV sal ary)
FROM  enpl oyees);

Introduction to Oracle9i: SQL A-19



Practice 7 Solutions
Determine whether the following statements are true or false:
1. Thefollowing statement is correct:
DEFINE & p_val = 100

False
Thecorrect use of DEFINE isDEFI NE p_val =100. The &isused within the SQL code.

2. The DEFI NE command isa SQL command.

False
The DEFI NE command isan iSQL*Plus command.

3. Write ascript to display the employee last name, job, and hire date for all employees who
started between a given range. Concatenate the name and job together, separated by a space
and comma, and label the column Employees. In a separate SQL script file, use the DEFI NE
command to provide the two ranges. Use the format MM/DD/YY Y'Y . Save the script files as
| ab7_3a. sqgl andl ab7_3b. sql .

-- lab file lab7_3a. sql

SET ECHO OFF

SET VERI FY COFF

DEFI NE | ow_date = 01/01/1998
DEFI NE hi gh_date = 01/01/1999

-- lab file | ab7_3a. sql

SELECT last _nane ||’', '|| job_id EMPLOYEES, hire date

FROM enpl oyees

WHERE  hire_date BETWEEN TO DATE(’ & ow date’, ' MM DD/ YYYY')
AND TO DATE(’ &hi gh_date’, ' MM DD/ YYYY')

/

UNDEFI NE | ow _dat e
UNDEFI NE hi gh_dat e
SET VERI FY ON

SET ECHO ON

Introduction to Oracle9i: SQL A-20



Practice 7 Solutions (continued)

4. Write ascript to display the employee last name, job, and department name for a given location.
The search condition should alow for case-insensitive searches of the department location. Save
the script fileas| ab7_4. sql .

SET ECHO OFF

SET VERI FY OFF

COLUWN | ast _name HEADI NG " EMPLOYEE NAME'

COLUWN depart nment _nanme HEADI NG " DEPARTMENT NANME’
SELECT e.last_nane, e.job_id, d.departnent_name
FROM enpl oyees e, departnents d, |ocations |
WHERE e.departnent _id = d.departnent _id

AND |.location_id = d.location_id

AND l.city = INNTCAP(' & _l ocation')

/

COLUWN | ast _nanme CLEAR

COLUWN depart nment _nane CLEAR
SET VERI FY ON
SET ECHO ON

Introduction to Oracle9i: SQL A-21



Practice 7 Solutions (continued)

5. Modify thecodein| ab7_4. sql to create areport containing the department name, employee
last name, hire date, salary, and each employee’ sannual salary for al employeesin agiven
location. Label the columns DEPARTMENT NAME, EMPLOY EE NAME, START DATE,
SALARY, and ANNUAL SALARY, placing the labels on multiple lines. Resave the script as
| ab7_5. sql and execute the commandsin the script.

SET ECHO OFF

SET FEEDBACK OFF

SET VERI FY OFF

BREAK ON depart nment _nane

CCOLUWN
CCLUWN
CCOLUWN
COLUWN
CCOLUWN
SELECT

FROM
VWHERE
AND
AND

depart ment _nanme HEADI NG " DEPARTMENT| NAME"

| ast _name HEADI NG " EMPLOYEE| NAVE"

hi re_dat e HEADI NG " START| DATE"

sal ary HEADI NG " SALARY" FORMAT $99, 990. 00
asal HEADI NG " ANNUAL| SALARY" FORMAT $99, 990. 00
d. depart ment _nane, e.last_nanme, e.hire_date,
e.salary, e.salary*12 asal

departnments d, enpl oyees e, locations |
e.departnment _id = d.departnent _id
d.location_id =I|.location_id

l.city = ' &p_l ocation’

ORDER BY d. depart nent _nane

/
COLUWN
COLUWN
CCOLUWN
CCLUWN
CCOLUWN

departnment _nane CLEAR
| ast _name CLEAR

hire date CLEAR

sal ary CLEAR

asal CLEAR

CLEAR BREAK
SET VERI FY ON
SET FEEDBACK ON
SET ECHO ON

Introduction to Oracle9i: SQL A-22



Practice 8 Solutions
Insert datainto the MY_ EMPLOYEE table.

1. Runthe statement inthel ab8 1. sql script to build the M¥_ EMPLOYEE table that will be used

for the lab.

CREATE TABLE ny_enpl oyee
(id NUMBER(4) CONSTRAINT ny_enpl oyee_i d_nn NOT NULL,
| ast _nanme VARCHAR2(25),
first_name VARCHAR2(25),
userid VARCHAR2(8),
salary NUMBER(9, 2));

2. Describe the structure of the MY_EMPLOYEE table to identify the column names.
DESCRI BE ny_enpl oyee

3. Add thefirst row of datato the MY_EMPLOYEE table from the following sample data. Do not list
the columnsin the | NSERT clause.

ID LAST NAME | FIRST _NAME | USERID SALARY
1 Patel Ralph rpatel 895
2 Dancs Betty bdancs 860
3 Biri Ben bbiri 1100
4 Newman Chad cnewman 750
5 Ropeburn Audrey aropebur 1550

| NSERT | NTO ny_enpl oyee
"Ral ph’, ’'rpatel’,

VALUES

(1, 'Patel’,

4. Populate the MY_EMPLOYEE table with the second row of sample data from the preceding list.

Thistime, list the columns explicitly in the | NSERT clause.

| NSERT | NTO ny_enpl oyee (id, l|ast_nanme, first_nane,
userid, salary)

VALUES (2, 'Dancs’, 'Betty’, 'bdancs’, 860);

Confirm your addition to the table.

SELECT  *
FROM my_enpl oyee;

Introduction to Oracle9i: SQL A-23



Practice 8 Solutions (continued)

6. Writeaninsert statement in atext file named | oadenp. sql toload rowsinto the
MY_EMPLOYEE table. Concatenate the first |etter of the first name and the first seven characters
of the last name to produce the userid.

SET ECHO OFF

SET VERI FY OFF

| NSERT | NTO ny_enpl oyee

VALUES (&p_id, '& last _nanme’, '&p first _nane’,
| ower (substr(’ & _first_nane’, 1, 1) ||
substr(’ &_last_name’, 1, 7)), &p_salary);

SET VERI FY ON

SET ECHO ON

7. Populate the table with the next two rows of sample data by running the insert statement in the
script that you created.

SET ECHO OFF

SET VERI FY OFF

I NSERT | NTO ny_enpl oyee

VALUES (&p_id, '&p last_nane’, ’'&p first_nane’,
| ower (substr(’ & first _name’, 1, 1) ||
substr(’' & last_nanme’', 1, 7)), &p_salary);

SET VERI FY ON

SET ECHO ON

8. Confirm your additionsto the table.

SELECT *
FROM ny_enpl oyee;

9. Make the data additions permanent.
COW T;

Introduction to Oracle9i: SQL A-24



Practice 8 Solutions (continued)
Update and delete datain the M¥_ EMPL OYEE table.

10. Change the last name of employee 3 to Drexler.

UPDATE ny_enpl oyee
SET | ast _nanme = ’'Drexler’
VWHERE id = 3;

11. Change the sadlary to 1000 for all employees with a salary less than 900.

UPDATE ny_enpl oyee
SET salary = 1000
WHERE sal ary < 900;

12. Verify your changesto the table.

SELECT | ast_nane, salary
FROM my_enpl oyee;

13. Delete Betty Dancs from the MY_ EMPLOYEE table.

DELETE
FROM ny_enpl oyee
WHERE | ast _nanme = ' Dancs’;

14. Confirm your changesto the table.

SELECT *
FROM my_enpl oyee;

15. Commit al pending changes.
COW T;

Control datatransaction to the MY_EMPLOYEE table.

16. Populate the table with the last row of sample data by modifying the statements in the script that
you created in step 6. Run the statements in the script.

SET ECHO OFF

SET VERI FY OFF

I NSERT | NTO ny_enpl oyee

VALUES (&p_id, '&p last _name’, '&p first_nane’,
| oner (substr(’ & first_name’, 1, 1) ||
substr(’ &_last_nane’, 1, 7)), &p_salary);

SET VERI FY ON

SET ECHO ON

Introduction to Oracle9i: SQL A-25



Practice 8 Solutions (continued)
17. Confirm your addition to the table.

SELECT *
FROM ny_enpl oyee;

18. Mark an intermediate point in the processing of the transaction.
SAVEPO NT step_18;

19. Empty the entire table.

DELETE
FROM ny_enpl oyee;

20. Confirm that the table is empty.

SELECT *
FROM  ny_enpl oyee;

21. Discard the most recent DELETE operation without discarding the earlier | NSERT operation.
ROLLBACK TO step_18;
22. Confirm that the new row is till intact.

SELECT *
FROM  ny_enpl oyee;

23. Make the data addition permanent.
COW T,

Introduction to Oracle9i: SQL A-26



Practice 9 Solutions

1. Createthe DEPT table based on the following table instance chart. Place the syntax in a script called
| ab9_1. sqgl , then execute the statement in the script to create the table. Confirm that the table is
created.

Column Name I D NANVE

Key Type
Nulls/Unique
FK Table
FK Column
Datatype Nunber VARCHAR2

L ength 7 25

CREATE TABLE dept
(i d NUVBER(7),
name VARCHAR2(25));

DESCRI BE dept

2. Populate the DEPT table with data from the DEPARTMENTS table. Include only columns that
you need.

| NSERT | NTO dept
SELECT departnent _id, departnent_name
FROM depart nments;

3. Createthe EMP table based on the following table instance chart. Place the syntax in a script caled
| ab9_3. sqgl , and then execute the statement in the script to create the table. Confirm that the
tableis created.

Column Name | !D
Key Type
Nulls/Unique
FK Table
FK Column

LAST_NANVE FIRST_NAVE | DEPT_ID

Data type

Nunmber

VARCHAR2

VARCHAR2

Nunmber

Length

25

25

Introduction to Oracle9i: SQL A-27




Practice 9 Solutions (continued)

CREATE TABLE enp

(id NUVBER( 7) ,
| ast _nane VARCHAR2( 25) ,
first_name VARCHAR2( 25) ,
dept id NUVBER( 7)) ;
DESCRI BE enp

4. Modify the EMP tableto alow for longer employee last names. Confirm your modification.

ALTER TABLE enp
MODI FY (| ast _nane VARCHAR2(50) ) ;

DESCRI BE enp

5. Confirm that both the DEPT and EMP tables are stored in the data dictionary. (Hint:
USER_TABLES)

SELECT t abl e_nane
FROM user tables
WHERE tabl e_name IN (' DEPT', 'EMP);

6. Createthe EMPLOYEES? table based on the structure of the EMPLOYEES table. Include only
the EMPLOYEE_| D, FI RST_NAME, LAST_NAME, SALARY, and DEPARTMENT _| D columns.
Name the columnsin your new table | D, FI RST_NAME, LAST NAME, SALARY , and
DEPT _| D, respectively.

CREATE TABLE enpl oyees2 AS
SELECT enployee_id id, first_name, |ast_nane, salary,

departnent _id dept_id
FROM enpl oyees;

7. Dropthe EVP table.
DRCOP TABLE enp;

8. Renamethe EMPLOYEES2 table to EMP.
RENAVE enpl oyees2 TO enp;

Introduction to Oracle9i: SQL A-28



Practice 9 Solutions (continued)

9.

10.

11.

Add a comment to the DEPT and EMP tabl e definitions describing the tables. Confirm your
additions in the data dictionary.

COMMVENT ON TABLE enp IS ' Enpl oyee Information’;
COMVENT ON TABLE dept 1S ' Departnent Information’;

SELECT ~*

FROM user tab _comments
WHERE tabl e_nanme = ' DEPT
OoR tabl e_name = ' EMP ;

Drop the FI RST_NAME column from the EMP table. Confirm your modification by checking the
description of thetable.

ALTER TABLE enp
DROP COLUWMN FI RST_NAME;

DESCRI BE enp

In the EMP table, mark the DEPT _I D column in the EMP table as UNUSED. Confirm your
modification by checking the description of the table.

ALTER TABLE enp
SET UNUSED (dept_id);

DESCRI BE enp

12. Drop all the UNUSED columns from the EMP table. Confirm your modification by checking the

description of thetable.

ALTER TABLE enp
DROP UNUSED COLUMNS;

DESCRI BE enp

Introduction to Oracle9i: SQL A-29



Practice 10 Solutions

1. Addatable-level PRI MARY KEY constraint to the EVP table on the | D column. The constraint
should be named at creation. Name the constraint ny_enp_i d_pk

ALTER TABLE  enp
ADD CONSTRAI NT my_enp_i d_pk PRI MARY KEY (id);

2. Createa PRI MARY KEY constraint to the DEPT table using the | D column. The congtraint
should be named at creation. Name the constraint ny_dept i d_pk.

ALTER TABLE  dept
ADD CONSTRAI NT my_dept _i d_pk PRI MARY KEY(id);

3. Addacolumn DEPT_| Dto the EMP table. Add aforeign key reference on the EMP table that
ensures that the employee is not assigned to a nonexistent department. Name the constraint
my_enp_dept id fk.

ALTER TABLE enp
ADD (dept_id NUMBER(7));

ALTER TABLE enp
ADD CONSTRAI NT my_enp_dept _id _fk
FOREI GN KEY (dept i d) REFERENCES dept (id);

4. Confirm that the constraints were added by querying the USER_CONSTRAI NTS view. Note the
types and names of the constraints. Save your statement text in afilecalled | ab10 4. sql .

SELECT  constraint_nane, constraint_type
FROM user _constraints
VHERE table_nanme IN (' EM, 'DEPT);

5. Display the object names and types from the USER _OBJECTS data dictionary view for the EMP
and DEPT tables. Notice that the new tables and a new index were created.

SELECT  obj ect _nane, object_type

FROM user _objects
WHERE obj ect _nane LI KE ' EMP%
oR obj ect _nane LI KE ' DEPT% ;

If you have time, complete the following exercise:

6. Modify the EMP table. Add a COVM SSI ON column of NUMBER datatype, precision 2, scale 2.
Add a constraint to the commission column that ensures that a commission value is greater than
zero.

ALTER TABLE EMP
ADD commi ssi on NUMBER( 2, 2)
CONSTRAI NT ny_enp_comm ck CHECK (commi ssion >= O;

Introduction to Oracle9i: SQL A-30



Practice 11 Solutions

1. Createaview caled EMPLOYEES_ VU based on the employee numbers, employee names, and
department numbers from the EMPLOYEES table. Change the heading for the employee name to
EMPLOYEE.

CREATE OR REPLACE VI EW enpl oyees_vu AS
SELECT enpl oyee_id, |ast_nane enpl oyee, departnent _id
FROM enpl oyees;

2. Display the contents of the EMPLOYEES VU view.
SELECT  *
FROM enpl oyees_vu;
3. Select the view name and text from the USER_VI EWS data dictionary view.

Note: Another view already exists. The EMP_DETAI LS VI EWwas created as part of your
schema.

Note: To see more contents of a LONG column, use the iSQL* Plus command SET LONG n,
where n isthe value of the number of characters of the L ONG column that you want to see.

SET LONG 600
SELECT vi ew_name, text
FROM user Vi ews;

4. Usingyour EMPLOYEES VU view, enter aquery to display al employee names and department

numbers.
SELECT  enpl oyee, departnent _id
FROM enpl oyees_vu;

5. Create aview named DEPT50 that contains the employee numbers, employee last names, and
department numbers for all employeesin department 50. Label the view columns
EMPNO, EMPLOYEE, and DEPTNQO. Do not alow an employee to be reassigned to another
department through the view.

CREATE VI EW dept 50 AS

SELECT  enpl oyee_id enpno, |ast_nane enpl oyee,
departnent id deptno

FROM enpl oyees

WHERE departnment _id = 50

W TH CHECK OPTI ON CONSTRAI NT enp_dept _50;

Introduction to Oracle9i: SQL A-31



Practice 11 Solutions (continued)
6. Display the structure and contents of the DEPT50 view.

DESCRI BE dept 50
SELECT *
FROM dept 50;

7. Attempt to reassign Matos to department 80.

UPDATE  dept 50
SET deptno = 80
VHERE enpl oyee = ' Matos’;

If you have time, complete the following exercise:

8. Createaview called SALARY_VU based on the employee |ast names, department names, salaries,
and salary grades for al employees. Use the EMPLOYEES, DEPARTMENTS, and JOB_GRADES
tables. Label the columns Enpl oyee, Depar t ment , Sal ary, and Gr ade, respectively.

CREATE OR REPLACE VIEW sal ary_vu
AS
SELECT e. |l ast_nane "Enpl oyee",
d. depart ment _nane "Departnent”,
e.salary "Sal ary",
j . grade_| evel "G ades"
FROM enpl oyees e,
departnents d,
j ob_grades |j
WHERE e.departnment _id = d.departnent _id
AND e.sal ary BETWEEN j .l owest _sal and j.highest sal;

Introduction to Oracle9i: SQL A-32



Practice 12 Solutions

1. Create asequence to be used with the primary key column of the DEPT table. The sequence

should start at 200 and have a maximum value of 1000. Have your sequence increment by ten
numbers. Name the sequence DEPT_| D_SEQ.

CREATE SEQUENCE dept _i d_seq
START W TH 200

| NCREMENT BY 10

MAXVALUE 1000;

2. Writeaquery in ascript to display the following information about your sequences: sequence
name, maximum value, increment size, and last number. Name the script | ab12 2. sgl . Run
the statement in your script.

SELECT sequence_nane, nmax_val ue, increnent_by, |ast_nunber
FROM user _sequences;

3. Writeascript to insert two rows into the DEPT table. Name your script | ab12_3. sql . Besure
to use the sequence that you created for the ID column. Add two departments named Education
and Administration. Confirm your additions. Run the commands in your script.

| NSERT | NTO dept
VALUES (dept _id seq.nextval, 'Education’);

I NSERT | NTO dept
VALUES (dept _id_seq.nextval, 'Adm nistration');

4. Create anonunique index on the foreign key column (DEPT_I D) in the EMP table.

CREATE | NDEX enp_dept _id_idx ON enp (dept_id);

5. Display theindexes and uniquenessthat exist in the data dictionary for the EMP table. Save the
statement into ascript named | ab12_5. sql .

SELECT i ndex_nane, table_name, uni queness
FROM user i ndexes
WHERE tabl e_nane = ' EMP ;

Introduction to Oracle9i: SQL A-33



Practice 13 Solutions

1. What privilege should a user be given to log on to the Oracle Server? Isthis a system or an object

privilege?

The CREATE SESSI ON system privilege

What privilege should a user be given to create tables?

The CREATE TABLE privilege

If you create atable, who can pass aong privileges to other users on your table?

You can, or anyone you have given those privilegesto by using the W TH GRANT
OPTI ON.

You arethe DBA. Y ou are creating many users who require the same system privileges.

What should you use to make your job easier?

Create arole containing the system privileges and grant theroleto theusers

What command do you use to change your password?
The ALTER USER statement

Grant another user accessto your DEPARTMENTS table. Have the user grant you query accessto
his or her DEPARTMENTS table.

Team 2 executes the GRANT st at enent.

GRANT sel ect
ON departnments
TO <user 1>;

Team 1 executes the GRANT st at enent.

GRANT sel ect
ON departnments
TO <user 2>;

VWHERE user1 is the nane of team 1l and user2 is the nane of team 2.

7.

Query al the rowsin your DEPARTMENTS table.

SELECT *
FROM depart nments;

Introduction to Oracle9i: SQL A-34



Practice 13 Solutions (continued)
8. Add anew row to your DEPARTMENTS table. Team 1 should add Education as department

number 500. Team 2 should add Human Resources department number 510. Query the other

team’ stable.
Team 1 executes this | NSERT st at enent.
I NSERT | NTO departnent s(departnent _i d, departnent _nane)
VALUES (500, 'Education’);

COW T;
Team 2 executes this | NSERT st at enent.

| NSERT | NTO departnent s(departnent _id, departnent nane)
VALUES (510, 'Administration’);
COW T;
9. Create asynonym for the other team’s DEPARTMENTS table.
Team 1 creates a synonym naned teang.

CREATE SYNONYM t ean®
FOR <user 2>. DEPARTMENTS;

Team 2 creates a synonym naned teamnil.

CREATE SYNONYM t eaml
FOR <user 1>. DEPARTMENTS;

10. Query al therowsin the other team’s DEPARTMENTS table by using your synonym.
Team 1 executes this SELECT statenent.

SELECT *

FROM t ean®;
Team 2 executes this SELECT st atenent.

SELECT *
FROM t eant;

Introduction to Oracle9i: SQL A-35



Practice 13 Solutions (continued)
11. Query the USER_TABLES data dictionary to see information about the tables that you own.
SELECT tabl e name
FROM user tabl es;

12. Query the ALL_TABLES data dictionary view to see information about all the tables that you
can access. Exclude tables that you own.

SELECT tabl e _name, owner
FROM all tables
VWHERE owner <> <your account>;
13. Revoke the SELECT privilege from the other team.
Team 1 revokes the privilege.

REVCKE sel ect
N departnents
FROM  user 2;

Team 2 revokes the privilege.

REVCKE sel ect
ON departnents
FROM user1;

14. Remove the row you inserted into the DEPARTMENTS table in step 8 and save the changes.
Team 1 executes this | NSERT statenent.
DELETE FROM departnents
WHERE departnent _id = 500;
COW T;
Team 2 executes this | NSERT st at enent.
DELETE FROM departnents
WHERE departnment _id = 510;
COW T;

Introduction to Oracle9i: SQL A-36



Practice 14 Solutions

1. Createthe tables based on the following table instance charts. Choose the appropriate data types
and be sureto add integrity constraints.

a. Table name: MEMBER

Column_ | MEMBER_ | LAST_ FI RST_NAM | ADDRESS aTy PHONE JAO N
Name I D NANVE E _
DATE

Key PK
Type
Null/ NN,U NN NN
Unique
Default System
Value Date
Data NUMBER VARCHAR2 | VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 | DATE
Type
Length 10 25 25 100 30 15

CREATE TABLE nenber

(menber_id NUMBER( 10)

CONSTRAI NT nmenber _nenber _id_pk PRI MARY KEY,
| ast _nane VARCHAR2( 25)
CONSTRAI NT nenber _I ast _nanme_nn NOT NULL,

first_nane VARCHAR2( 25) ,

addr ess VARCHAR2( 100) ,

city VARCHAR2( 30) ,

phone VARCHAR2( 15) ,

join_date DATE DEFAULT SYSDATE

CONSTRAI NT nenber _j oi n_date_nn NOT NULL);

Introduction to Oracle9i: SQL A-37




Practice 14 Solutions (continued)
b. Tablename: TI TLE

Column_ | TITLE_ID | TITLE DESCRI PTI ON | RATI NG CATEGORY RELEASE _
Name DATE
Key PK
Type
Null/ NN,U NN NN
Unique
Check G, PG, R, DRAMA,
NC17, NR COMEDY,
ACTION,
CHILD,
SCIF,
DOCUMEN
TARY
Data Type | NUMBER VARCHAR2 | VARCHAR2 VARCHAR2 VARCHAR2 DATE
Length 10 60 400 4 20
CREATE TABLE title
(title_id NUVBER(10)
CONSTRAINT title_title_id pk PRI MARY KEY,
title VARCHAR2( 60)
CONSTRAINT title_ title_nn NOT NULL,
descri ption VARCHAR2( 400)
CONSTRAINT title_description_nn NOT NULL,
rating VARCHAR2( 4)
CONSTRAINT title_rating_ck CHECK
(rating IN("G, "PG, "R, "NC17, "NR)),
cat egory VARCHAR2( 20),
CONSTRAINT title_category_ck CHECK
(category IN (' DRAMA , ' COVEDY', 'ACTION ,

"CH LD ,

rel ease_date

DATE) ;

"SCI K,

’ DOCUMENTARY' ) ),

Introduction to Oracle9i: SQL A-38




Practice 14 Solutions (continued)
c. Tablename: TI TLE_COPRY

Column COPY_I D TITLE_ID STATUS

Name

Key PK PK,FK

Type

Null/ NN,U NN,U NN

Unigue

Check AVAILABLE,
DESTROYED,
RENTED,
RESERVED

FK Ref TITLE

Table

FK Ref TITLE_ID

Col

Data NUVMBER NUVBER VARCHAR2

Type

L ength 10 10 15

CREATE TABLE title_copy

(copy_id NUMBER( 10) ,
title_id NUVBER( 10)
CONSTRAINT title_copy_title if_fk REFERENCES title(title_id),
st at us VARCHAR2( 15)

CONSTRAINT title_copy_status_nn NOT NULL
CONSTRAINT title copy status _ck CHECK (status IN

(" AVAI LABLE' , ' DESTROYED ,’ RENTED , ' RESERVED )),
CONSTRAINT title copy copy id title id pk
PRI MARY KEY (copy_id, title_id));

Introduction to Oracle9i: SQL A-39



Practice 14 Solutions (continued)
d. Table name: RENTAL

Column BOOK | MEMBER | COPY_ ACT_RET_ | EXP_RET_ | TITLE_
Name DATE I D I D DATE DATE I D
Key PK PK,FK1 PK,FK2 PK,FK2
Type
Default System System Date
Value Date + 2 days
FK Ref MEMBER TI TLE_ TI TLE_
Table CoPY CoPY
FK Ref MEMBER | | COPY_ TITLE_ID
Col D I D
Data DATE NUVBER NUVBER | DATE DATE NUVBER
Type
L ength 10 10 10

CREATE TABLE rental

(book_dat e DATE DEFAULT SYSDATE,

menber _id NUMBER( 10)

CONSTRAI NT rental _nenber _id fk
REFERENCES nenber ( nenber i d),
copy_id NUVBER(10),
act _ret date DATE,
exp_ret _date DATE DEFAULT SYSDATE + 2,
title_id NUVBER( 10) ,
CONSTRAI NT rental book _date copy title pk

PRI MARY KEY (book date, nenber _id,

copy id, title_id),
CONSTRAINT rental _copy_id title id fk

FOREI GN KEY (copy_id, title_id)
REFERENCES titl e _copy(copy_id, title_ id));

Introduction to Oracle9i: SQL A-40



Practice 14 Solutions (continued)
e. Table name: RESERVATI ON

Column RES MEMBER _ TITLE
Name DATE I D | D

Key PK PK,FK1 PK,FK2
Type

Null/ NN,U NN,U NN
Unique

FK Ref MEMBER TI TLE
Table

FK Ref MEMBER | D TITLE ID
Column

Data Type DATE NUMBER NUMBER
Length 10 10

CREATE TABLE reservati on

(res_date DATE,

menber _id NUVBER( 10)
CONSTRAI NT reservation_nenber _id
REFERENCES nenber ( nenber i d),

title_id NUMBER( 10)
CONSTRAI NT reservation_title_ id
REFERENCES title(title_id),

CONSTRAI NT reservation_resdate memtit_pk PRI MARY KEY
(res_date, nmenber_id, title_id));

Introduction to Oracle9i: SQL A-41



Practice 14 Solutions (continued)

2. Veify that the tables and constraints were created properly by checking the data dictionary.

SELECT table_nane

FROM user tabl es

WHERE table_name IN (' MEMBER , 'TITLE , ' TI TLE _COPY',
" RENTAL’ , ' RESERVATION ) ;

SELECT constraint_name, constraint_type, tabl e _nane
FROM user _constraints
VHERE table_name IN (' MEMBER , 'TITLE , 'TITLE CORPY',

" RENTAL’, ’ RESERVATION );

3. Create sequencesto uniquely identify each row in the MEMBER table and the TI TLE table.

a. Member number for the MEMBER table: start with 101; do not alow caching of the
values. Name the sequence MEMBER | D_SEQ.

CREATE SEQUENCE nenber _id_seq
START W TH 101
NOCACHE;

b. Title number for the TI TLE table: start with 92; no caching. Name the sequence
TI TLE | D_SEQ

CREATE SEQUENCE title_id_seq
START W TH 92
NOCACHE;

c. Veify the existence of the sequencesin the data dictionary.

SELECT sequence_nane, increnent_by, |ast_nunber
FROM user_sequences
WHERE  sequence_nane IN (' MEMBER ID SEQ, 'TITLE I D SEQ );

Introduction to Oracle9i: SQL A-42



Practice 14 Solutions (continued)

4. Add datato thetables. Create a script for each set of datato add.

a Add movietitlesto the TI TLE table. Write a script to enter the movie information. Save the
statementsin ascript named | ab14_4a. sql . Use the sequences to uniquely identify each
title. Enter the release dates in the DD- MON- YYYY format. Remember that single quotation
marks in a character field must be specially handled. Verify your additions.

SET ECHO OFF

INSERT INTOtitle(title_id, title, description, rating,

category, rel ease _date)

VALUES (title_id seq. NEXTVAL, "WIllie and Christmas Too’',
"All of WIlie s friends make a Christmas list for

Santa, but WIllie has yet to add his own wish list.’,
"G, "CH LD, TO_DATE(’ 05-OCT-1995",’ DD- MON- YYYY')

/

INSERT INTO title(title id , title, description, rating,

category, rel ease _date)

VALUES (title_id seq. NEXTVAL, 'Alien Again', 'Yet another
install ment of science fiction history. Can the
her oi ne save the planet fromthe alien life forn? ,
"R, "SCIFI', TO DATE( ’19- MAY-1995',’ DD- MON- YYYY'))

/

INSERT INTO title(title_id, title, description, rating,

category, rel ease_date)

VALUES (title_id_seq. NEXTVAL, 'The G ob’, 'A neteor crashes
near a small American town and unl eashes carni vorous
goo in this classic.”, "NR, 'SCFI",

TO DATE( ' 12- AUG 1995’ ,’ DD- MON- YYYY'))

/

INSERT INTOtitle(title_id, title, description, rating,

category, rel ease_date)

VALUES (title_id seq. NEXTVAL, 'MWy Day Of’', "Wth a little
luck and a lot ingenuity, a teenager skips school for
a day in New York.', 'PG, ’'COMEDY ,

TO DATE( ' 12-JUL-1995' ,’ DD- MON- YYYY'))

/

COWM T
/
SET ECHO ON

SELECT title
FROM title;

Introduction to Oracle9i: SQL A-43



Practice 14 Solutions (continued)

Title Description Rating | Category | Release date
Willie and All of Willie'sfriends G CHILD 05-OCT-1995
Christmas make a Christmas list for
Too Santa, but Willie has yet to
add his own wish list.
Alien Again | Yet another installation of R SCIFI 19-MAY-1995
science fiction history. Can
the heroine save the planet
fromtheadien life form?
The Glob A meteor crashes near a NR SCIFI 12-AUG-1995
small American town and
unleashes carnivorous goo
in thisclassic.
My Day Off | Withalittleluck andalot | PG COMEDY | 12-JUL-1995
of ingenuity, a teenager
skips school for aday in
New York.
Miracleson | A six-year-old hasdoubts | PG DRAMA 12-SEP-1995
Ice about Santa Claus, but she
discovers that miracles
really do exist.
Soda Gang After discoveringacache | NR ACTION 01-JUN-1995

of drugs, ayoung couple
find themselves pitted
against avicious gang.

Introduction to Oracle9i: SQL A-44




Practice 14 Solutions (continued)
b. Add datato the MEMBER table. Place the insert statements in a script named

| ab14 4b. sql . Execute commands in the script. Be sure to use the sequence to add the
member numbers.

First_ Last_Name | Address City Phone Join_Date

Name

Carmen V elasquez 283 King Street | Seattle 206-899-6666 | 08-M AR-1990

LaDoris N gao 5 M odrany Bratislava 586-355-8882 | 08-M AR-1990

Midori Nagayama 68 Via Centrale | Sao Paolo 254-852-5764 | 17-JUN-1991

M ark Quick-to- 6921 King L agos 63-559-7777 07-APR-1990

See W ay

Audry Ropeburn 86 Chu Street Hong Kong | 41-559-87 18-JAN-1991

M olly Urguhart 3035 Laurier Quebec 418-542-9988 | 18-JAN-1991
SET ECHO OFF

SET VERI FY OFF

I NSERT | NTO nenber (nmenber _id, first_nanme, |ast_nane, address,

city, phone, join_date)
VALUES (nenber id seq. NEXTVAL, '&first_nanme’', ’'& ast_nane’,
"&address’, '&city’', ' &phone’, TO DATE(’ & oi n_date’,
' DD- MM YYYY' ) ;

COW T;

SET VERI FY ON

SET ECHO ON

Introduction to Oracle9i: SQL A-45



Practice 14 Solutions (continued)

¢. Add thefollowing movie copiesinthe TI TLE COPY table:
Note: Havethe Tl TLE | D numbers available for this exercise.

Title Copy_Id Status
Willieand Christmas Too | 1 AVAILABLE
Alien Again 1 AVAILABLE
2 RENTED
The Glob 1 AVAILABLE
My Day Off 1 AVAILABLE
2 AVAILABLE
3 RENTED
Miracleson Ice 1 AVAILABLE
Soda Gang 1 AVAILABLE

I NSERT INTO title_copy(copy_id,
VALUES (1, 92, 'AVAILABLE');

I NSERT INTO title_copy(copy_id,
VALUES (1, 93, 'AVAILABLE );

I NSERT INTO title_copy(copy_id,
VALUES (2, 93, 'RENTED );

I NSERT INTO titl e _copy(copy_id,
VALUES (1, 94, ’'AVAI LABLE );

I NSERT INTO titl e _copy(copy_id,
VALUES (1, 95, ’'AVAILABLE );

I NSERT INTO titl e _copy(copy_id,
VALUES (2, 95, 'AVAILABLE );

I NSERT INTO titl e _copy(copy_id,
VALUES (3, 95, 'RENTED );

I NSERT INTO titl e _copy(copy_id,
VALUES (1, 96, 'AVAILABLE);

I NSERT INTO titl e _copy(copy_id,
VALUES (1, 97, 'AVAILABLE);

title_id, status)
title_id, status)
title_id, status)
title_id, status)
title_id, status)
title_id, status)
title_id, status)
title_id, status)

title_id, status)

Introduction to Oracle9i: SQL A-46




Practice 14 Solutions (continued)
d. Add thefollowing rentalsto the RENTAL table:

Note: Title number may be different depending on sequence number.

COW T;

Introduction to Oracle9i: SQL A-47

Title_ | Copy_ | Member_
Id Id Id Book_date | Exp_Ret Date Act_Ret Date
92 1 101 3 days ago 1 day ago 2 days ago
93 2 101 1 day ago 1 day from now
95 3 102 2 days ago Today
97 1 106 4 days ago 2 days ago 2 days ago
INSERT INTO rental (title_id, copy_id, nenber_id,
book date, exp_ret _date, act_ret_date)
VALUES (92, 1, 101, sysdate-3, sysdate-1, sysdate-2);
I NSERT INTOrental (title id, copy_id, menber _id,
book_date, exp_ret_date, act_ret_date)
VALUES (93, 2, 101, sysdate-1, sysdate-1, NULL);
I NSERT INTO rental (title id, copy_id, menber _id,
book_date, exp_ret_date, act_ret_date)
VALUES (95, 3, 102, sysdate-2, sysdate, NULL);
I NSERT INTO rental (title_id, copy_id, nenber_id,
book _date, exp_ret_date, act_ret_date)
VALUES (97, 1, 106, sysdate-4, sysdate-2, sysdate-2);




Practice 14 Solutions (continued)

5. Createaview named Tl TLE_AVAI L to show the movie titles and the availability of

each copy and its expected return date if rented. Query all rows from the view. Order the results by
title.

CREATE VIEWtitle_avail AS
SELECT t.title, c.copy_id, c.status, r.exp_ret _date

FROM titlet, title copy ¢, rental r
VWHERE t.title_id =c.title_id

AND c.copy_id = r.copy_id(+)

AND c.title_id =r.title_id(+);
SELECT  *

FROM title_avail

ORDER BY title, copy_id;

6. Make changesto datain thetables.

a Add anew title. The movieis“Interstellar Wars,” which israted PG and classified as a
science fiction movie. The release date is 07-JUL-77. The description is“ Futuristic interstellar
action movie. Can the rebel s save the humans from the evil empire?’ Be sureto add atitle
copy record for two copies.

INSERT INTO title(title_id, title, description, rating,
category, release_date)

VALUES (title_id_seq. NEXTVAL, 'Interstellar Wars’,
"Futuristic interstellar action novie. Can the
rebels save the humans fromthe evil Enpire?’,
"PG, "SCIFI', "07-JUL-77");

I NSERT INTO title copy (copy_id, title_ id, status)
VALUES (1, 98, ’'AVAI LABLE');
INSERT INTO title_copy (copy_id, title_id, status)
VALUES (2, 98, ’'AVAILABLE');

b. Enter two reservations. One reservation isfor Carmen Velasquez, who wants to rent
“Interstellar Wars.” The other isfor Mark Quick-to-See, who wants to rent “ Soda Gang.”

I NSERT I NTO reservation (res_date, menber _id, title_id)
VALUES ( SYSDATE, 101, 98);
| NSERT | NTO reservation (res_date, nmenber _id, title_id)
VALUES ( SYSDATE, 104, 97);

Introduction to Oracle9i: SQL A-48



Practice 14 Solutions (continued)

C.

Customer Carmen Velasguez rents the movie “Interstellar Wars,” copy 1. Remove her
reservation for the movie. Record the information about the rental. Allow the default

value for the expected return date to be used. Verify that the rental was recorded by using
the view you created.

INSERT INTO rental (title id, copy_id, nenber_id)
VALUES (98, 1, 101);

UPDATE title_copy

SET status= ' RENTED

VWHERE title_id = 98

AND copy id = 1;

DELETE

FROM reservation

WHERE nenber id = 101;

SELECT *
FROM title_avail
ORDER BY title, copy_id;

7. Make amodification to one of the tables.

a

Add aPRI CE column to the TI TLE tableto record the purchase price of the video. The
column should have atotd length of eight digits and two decimal places. Verify your
modifications.

ALTER TABLE title

ADD (price NUMBER(S, 2));

DESCRIBE title

Introduction to Oracle9i: SQL A-49



Practice 14 Solutions (continued)

b. Createascript named| ab14_7b. sql that contains update statements that update each
video with a price according to the following list. Run the commands in the script.

Note: Havethe TI TLE | D numbers available for this exercise.

Title Price
Willie and Christmas Too 25
Alien Again 35
The Glob 35
My Day Off 35
Miracles on Ice 30
Soda Gang 35
Interstellar Wars 29
SET ECHO OFF

SET VERI FY OFF

DEFI NE price=

DEFINE title_id=

UPDATE title

SET price = &price

VWHERE title id = &itle_id;
SET VERI FY OFF

SET ECHO OFF

c. Ensurethat in the future al titles contain a price value. Verify the constraint.

ALTER TABLE title

MODI FY (price CONSTRAINT title price_nn NOT NULL);

SELECT constrai nt_nane, constraint_type,
search_condition

FROM user _constraints

VWHERE tabl e_nane = 'TITLE ;

Introduction to Oracle9i: SQL A-50



Practice 14 Solutions (continued)

8. Create areport titled Customer History Report. This report contains each customer’s
history of renting videos. Be sure to include the customer name, movie rented, dates of the
rental, and duration of rentals. Total the number of rentals for al customers for the reporting
period. Save the commands that generate the report in ascript filenamed | ab14_8. sql .

SET ECHO OFF

SET VERI FY OFF

TTI TLE ' Custoner History Report’
BREAK ON nenber SKIP 1 ON REPORT

SELECT mfirst_nane||’ ’'||mlast_nane MEMBER,
r.book date, r.act ret date - r.book date
DURATI ON
FROM menber m title t, rental r
WHERE r.nmenber_id = mnenber_id
AND r.title id =t.title_id

ORDER BY nenber ;

CLEAR BREAK
TTI TLE OFF
SET VERI FY ON
SET ECHO ON

Introduction to Oracle9i: SQL A-51

t.title,



Practice 15 Solutions

1. List the department IDs for departmentsthat do not containthejob ID ST _CLERK, using SET
operators.

SELECT departnent _id

FROM departnents

M NUS

SELECT departnent _id

FROM  enpl oyees

WHERE job_id = 'ST _CLERK ;

2. Display the country ID and the name of the countries that have no departments located in
them, using SET operators.

SELECT country_id, country_nane
FROM countries

M NUS
SELECT |.country_id,c.country_name
FROM locations |, countries ¢

WHERE |.country_id = c.country_id;

3. Producealist of jobs for departments 10, 50, and 20, in that order. Display job ID and
department 1D, using SET operators.

COLUWN dummy NOPRI NT

SELECT job_ id, departnent_id, 'x' dumy
FROM enpl oyees

VWHERE departnent _id = 10

UNI ON

SELECT job_ id, departnent _id, 'y’
FROM enpl oyees

WHERE department _id = 50

UNI ON

SELECT job_id, departnent_id, 'z’
FROM enpl oyees

WHERE department _id = 20

ORDER BY 3;

COLUWN dummy PRI NT

Introduction to Oracle9i: SQL A-52



Practice 15 Solutions (continued)

4. Ligt the employee IDs and job IDs of those employees who currently have the job title that they
held before beginning their tenure with the company.

SELECT enpl oyee_id,job_id

FROM enpl oyees

| NTERSECT

SELECT enployee_id,job_id
FROM job_history;

5. Write acompound query that lists the following:

» Last names and department 1D of al the employees from the EMPLOYEES table,
regardless of whether or not they belong to any department

»  Department ID and department name of all the departments from the DEPARTMVENTS
table, regardless of whether or not they have employees working in them

SELECT | ast _name, departnent _i d, TO CHAR(nul I)

FROM  enpl oyees

UNI ON

SELECT TO CHAR(nul l), departnent _i d, depart nent _name
FROM depart nents;

Introduction to Oracle9i: SQL A-53



Practice 16 Solutions
1. AlterthesessiontosettheNLS DATE FORMAT to DD- MON- YYYY HH24: M : SS.

ALTER SESSI ON SET NLS_DATE_FORVAT =
" DD- MON- YYYY HH24: M : SS'

2. a Write queriesto display the time zone offsets (TZ_OFFSET) for the following time zones.

USPacific-New

SELECT TZ OFFSET ('’ US/ Paci fic-New ) from dual;
Sngapore

SELECT TZ OFFSET (' Si ngapore’') from dual;
Egypt

SELECT TZ OFFSET (' Egypt’) from dual;

b. Alter the session to set the TI ME_ZONE parameter value to the time zone offset of
US/Pacific-New.
ALTER SESSI ON SET TIME_ZONE = '-7:00;

c. Display the CURRENT _DATE, CURRENT _TI MESTAMP, and LOCALTI MESTAMP for this
session.
Note: The output might be different based on the date when the command is executed.

SELECT CURRENT_DATE, CURRENT_TI MESTAMP, LOCALTI MESTAMP
FROM DUAL,;

d. Alter the session to set the TI ME_ZONE parameter valueto the time zone offset of
Singapore.
ALTER SESSI ON SET TI ME_ZONE = ' +8: 00 ;

e. Display the CURRENT_DATE, CURRENT_TI MESTAMP, LOCALTI MESTAMP for this
Session.
Note: The output might be different, based on the date when the command is executed.

SELECT CURRENT_DATE, CURRENT_TI MESTAMP, LOCALTI MESTAMP
FROM DUAL,;

3. Write aquery to display the DBTI MEZONE and SESSI ONTI MEZONE.

SELECT DBTI MEZONE, SESSI ONTI MEZONE
FROM DUAL,

Introduction to Oracle9i: SQL A-54



Practice 16 Solutions (continued)
4. Write aquery to extract the YEAR from Hl RE_DATE column of the EMPLOYEES table for those
employees who work in department 80.

SELECT | ast _nanme, EXTRACT ( YEAR FROM HI RE_DATE)
FROM enpl oyees
WHERE departnent _id = 80;

5. Alterthesessionto setthe NLS DATE FORMAT to DD- MON- YYYY.
ALTER SESSI ON SET NLS DATE_FORMAT = ' DD- MON YYYY' ;

Introduction to Oracle9i: SQL A-55



Practice 17 Solutions
1. Write aquery to display the following for those employees whose manager ID isless than 120:

— Manager ID
— Job ID and total salary for every job ID for employees who report to the same manager
— Totd saary of those managers
— Totd salary of those managers, irrespective of thejob IDs

SELECT manager _i d, job_i d, sun(sal ary)

FROM  enpl oyees

WHERE manager id < 120
GROUP BY ROLLUP(manager _id,job_id);

2. Observe the output from question 1. Write a query using the GROUPI NG function to determine
whether the NULL valuesin the columns corresponding to the GROUP BY expressions are
caused by the ROLLUP operation.

SELECT manager _id MGR ,job_id JOB,

sun( sal ary) , GROUPI NG nanager _i d), GROUPI N j ob_i d)
FROM  enpl oyees

WHERE manager id < 120

GROUP BY ROLLUP(manager id,job_id);

3. Writeaquery to display the following for those employees whose manager ID is
lessthan 120 :

— Manager ID
— Job and total salaries for every job for employees who report to the same manager
— Totd saary of those managers

— Cross-tabulation values to display the total salary for every job, irrespective of the
manager
— Tota salary irrespective of al job titles

SELECT nanager id, job_id, sun{salary)
FROM  enpl oyees

WHERE manager _id < 120

GROUP BY CUBE(nanager _id, job_id);

Introduction to Oracle9i: SQL A-56



Practice 17 Solutions (continued)

4. Observethe output from question 3. Write a query using the GROUPI NG function to determine
whether the NULL valuesin the columns corresponding to the GROUP BY expressions are
caused by the CUBE operation.

SELECT manager _id M3R ,job_id JOB,

sum( sal ary), GROUPI NG nanager i d), GROUPI N& j ob_i d)
FROM  enpl oyees

VHERE manager _id < 120

GROUP BY CUBE(manager _id,job_id);

5. Using GROUPI NG SETS, write aquery to display the following groupings :
— departnent _id, manager_id, job_id
— departnent _id, job id
— Mnager _id, job_ id
The query should calcul ate the sum of the salaries for each of these groups.
SELECT departnent _id, manager_id, job_id, SUMsalary)
FROM enpl oyees
GROUP BY

GROUPI NG SETS ((department _id, nmanager _id, job_id),
(departnent _id, job_ id), (manager _id,job id));

Introduction to Oracle9i: SQL A-57



Practice 18 Solutions
1. Writeaquery to display the last name, department number, and salary of any employee whose
department number and salary both match the department number and salary of any employee

who earns a commission.

SELECT | ast_nane, departnent _id, salary

FROM enpl oyees
WHERE (sal ary, departnent_id) IN
(SELECT sal ary, departnent _id

FROM enpl oyees
WHERE  conmission_pct |'S NOT NULL);

2. Display the last name, department name, and salary of any employee whose salary and
commission match the salary and commission of any employee located in location ID1700.

SELECT e. |l ast_nane, d.departnent_nane, e.salary
FROM  enpl oyees e, departnents d
WHERE e.departnent _id = d.departnent _id
AND (salary, NVL(comm ssion_pct,0)) IN
(SELECT sal ary, NVL(conmm ssion_pct, 0)
FROM enpl oyees e, departnents d
WHERE e.departnent _id = d.department _id
AND d.location_id = 1700);

3. Create aquery to display the last name, hire date, and salary for all employees who have the
same salary and commission as Kochhar.
Note: Do not display Kochhar in the result set.

SELECT | ast_nane, hire_date, salary

FROM  enpl oyees
WHERE (sal ary, NvVL(commi ssion_pct,0)) IN
( SELECT sal ary, NVL(comm ssion_pct, 0)

FROM enpl oyees
WHERE | ast_nanme = ' Kochhar')

AND | ast_name != ' Kochhar’;

4. Create aquery to display the employees who earn asaary that is higher than the salary of
all of the salesmanagers (JOB_ | D = ' SA_MAN ). Sort the results on salary from highest to

|owest.

SELECT | ast_nane, job_id, salary

FROM enpl oyees
WHERE salary > ALL
( SELECT sal ary

FROM  enpl oyees
WHERE job_id = 'SA MAN )

ORDER BY sal ary DESC,

Introduction to Oracle9i: SQL A-58



Practice 18 Solutions (continued)

5. Display the details of the employee ID, last name, and department ID of those employees who
live in cities whose name begins with T.

SELECT enpl oyee_id, |ast_nane, departnment_id
FROM  enpl oyees
WHERE departnment _id IN (SELECT departnent id
FROM departnments
VWHERE | ocation_id IN
(SELECT location_id
FROM | ocati ons
WHERE city LIKE "T%));

6. Writeaquery tofind al employees who earn more than the average salary in their
departments. Display last name, salary, department 1D, and the average salary for the

department. Sort by average sdary. Use adiases for the columns retrieved by the query as
shown in the sample output.

SELECT e.l ast_nane enane, e.salary salary,
e.departnent _id deptno, AVE a.sal ary) dept_avg
FROM enpl oyees e, enpl oyees a
WHERE e.departnent_id = a.departnent _id
AND e.salary > (SELECT AV(@ sal ary)
FROM  enpl oyees

WHERE department _id = e.departnent _id )
GROUP BY e.l ast_name, e.salary, e.departnent_id
ORDER BY AV({ a. sal ary);

7. Find al employees who are not supervisors.
a. First dothisby using the NOT EXI STS operator.

SELECT outer.last_nane
FROM enpl oyees out er
VWHERE NOT EXI STS (SELECT ' X
FROM enpl oyees i nner
WHERE i nner. nmanager _id =
out er. enpl oyee_id);

Introduction to Oracle9i: SQL A-59



Practice 18 Solutions (continued)
b. Can this be done by using the NOT | N operator? How, or why not?

SELECT outer. | ast_name
FROM  enpl oyees outer
WHERE outer. enpl oyee_id
NOT I N ( SELECT i nner. manager _id
FROM  enpl oyees i nner);
This aternative solution is not a good one. The subquery picks up aNULL value, so the entire query
returns no rows. Thereason isthat all conditions that compare a NULL value result in NULL.

Whenever NULL values are likely to be part of the value set, do not use NOT | N as a substitute for
NOT EXI STS.

8. Writeaquery to display the last names of the employees who earn less than the average salary
in their departments.

SELECT | ast _nane
FROM enpl oyees out er
WHERE outer.salary < (SELECT AV i nner. sal ary)
FROM enpl oyees i nner
WHERE i nner . departnent _id
= out er.departnment _id);

9. Writeaquery to display the last names of employees who have one or more coworkersin their
departments with later hire dates but higher salaries.

SELECT | ast_nane
FROM enpl oyees out er
VWHERE EXI STS ( SELECT ' X
FROM enpl oyees i nner
WHERE i nner. departnment _id =
outer.departnent _id
AND i nner. hire_date > outer.hire_date
AND i nner.salary > outer.salary);

10. Write aquery to display the employee ID, last names, and department names of al employees.
Note: Use a scalar subquery to retrieve the department name in the SELECT statement.

SELECT enpl oyee i d, |ast_nane,
( SELECT depart nment _nane
FROM departnents d
WHERE e.departnent_id =
d.departnment _id ) departnent
FROM enpl oyees e
ORDER BY depart nment;

Introduction to Oracle9i: SQL A-60



Practice 18 Solutions (continued)

11. Write aquery to display the department names of those departments whose total salary cost is
above one-eighth (1/8) of the total salary cost of the whole company. Usethe W TH clauseto
write this query. Name the query SUMMVARY.

W TH
summary AS (
SELECT d. departnment_nanme, SUMe. sal ary) AS dept _total
FROM enpl oyees e, departnents d
WHERE e. departnment _id = d.departnent _id
GROUP BY d. depart nent _nane)
SELECT departnment _name, dept _total
FROM summary
WHERE dept _total > (
SELECT SUM dept total) * 1/8
FROM summary )
ORDER BY dept _total DESC,

Introduction to Oracle9i: SQL A-61



Practice 19 Solutions

1. Look at the following outputs. Are these outputs the result of ahierarchical query? Explain
why or why not.

Exhibit 1: Thisisnot a hierarchical query; thereport simply has a descending
sort on SALARY.

Exhibit 2: Thisisnot a hierarchical query; there aretwo tablesinvolved.

Exhibit 3: Yes, thisismost definitely a hierarchical query as it displaysthetree
structure representing the management reporting line from the EMPLOYEES
table.

2. Produce areport showing an organization chart for Mourgos' s department. Print last names,
salaries, and department IDs.

SELECT | ast _nane, salary, departnent_id
FROM enpl oyees

START WTH | ast_nane = ' Mourgos’

CONNECT BY PRI OR enpl oyee_id = manager _i d;

3. Create areport that shows the hierarchy of the managers for the employee Lorentz. Display his
immediate manager first.

SELECT | ast _nane

FROM enpl oyees

WHERE | ast_nane != 'Lorentz’

START WTH | ast_nane = ’'Lorentz’

CONNECT BY PRI OR manager _id = enpl oyee_i d;

4. Create anindented report showing the management hierarchy starting from the employee
whose LAST_NAME is Kochhar. Print the employee’ s last name, manager I1D, and department
ID. Give dias names to the columns as shown in the sampl e outpuit.

COLUWN nane FORVAT A20

SELECT LPAD(| ast _name, LENGTH(I| ast_nane)+(LEVEL*2)-2," )
name, manager _id ngr, departnment _id deptno

FROM enpl oyees

START WTH | ast _nanme = ' Kochhar’

CONNECT BY PRI OR enpl oyee _id = manager _id

/

COLUWN nane CLEAR

Introduction to Oracle9i: SQL A-62



Practice 19 Solutions (continued)
If you have time, compl ete the following exercises:
5. Produce a company organization chart that shows the management hierarchy. Start with the
person at the top level, exclude all people with ajob ID of IT_PROG, and exclude De Haan
and those employees who report to De Haan.

SELECT | ast _nane, enpl oyee_i d, manager _id
FROM  enpl oyees

VWHERE job_id !'="1T_PROG

START W TH manager _id IS NULL

CONNECT BY PRI OR enpl oyee_id = manager _id
AND | ast _nane != 'De Haan’;

Introduction to Oracle9i: SQL A-63



Practice 20 Solutions

1. Runthecre_sal history. sql scriptinthelabfolder to createthe SAL_HI STORY
table.

@\l ab\cre_sal history. sql
2. Display the structure of the SAL_HI STORY table.
DESC sal _history

3. Runthecre_ngr_history. sqgl scriptinthelab folder to create the MGR_HI STORY
table.

@\l ab\cre_ngr_hi story. sql

4. Display the structure of the MGR_HI STORY table.
DESC ngr _hi story

5. Runthecre_speci al _sal . sql scriptinthelab folder to create the SPECI AL_SAL
table.

@\l ab\cre_special _sal . sql

6. Display the structure of the SPECI AL_SAL table.
DESC speci al _sal

7. a. Write aquery to do the following:

— Retrieve the details of the employee ID, hire date, salary, and manager ID of those
employees whose employee ID isless than 125 from the EMPLOYEES table.

— If the sdary is more than $20,000, insert the details of employee ID and saary into the
SPECI AL_SAL table.

— Insert the details of the employee ID, hire date, and salary into the SAL_HI STORY
table.

— Insert the details of the employee ID, manager ID, and SYSDATE into the
MGR_HI STCRY table.

| NSERT ALL

VWHEN SAL > 20000 THEN

| NTO special _sal VALUES (EMPI D, SAL)

ELSE

| NTO sal _hi story VALUES( EMPI D, H REDATE, SAL)

I NTO ngr _hi story VALUES(EMPI D, MGR, SAL)

SELECT enpl oyee_id EMPID, hire_date H REDATE,
sal ary SAL, manager_id M3R

FROM enpl oyees

WHERE enpl oyee id < 125;

Introduction to Oracle9i: SQL A-64



Practice 20 Solutions (continued)

8.

b. Display the records from the SPECI AL_ SAL table.
SELECT * FROM special _sal;

c. Display the records from the SAL_HI STORY table.
SELECT * FROM sal _history;

d. Display the records from the MGR_HI STORY table.
SELECT * FROM ngr _hi story;

a. Runthecre_sal es_source_dat a. sqgl scriptinthelabfolder to create the
SALES SOURCE_DATAtable.

@\l ab\cre_sal es_source_dat a. sql

b. Runthei ns_sal es_source_dat a. sql scriptinthelab folder to insert recordsinto
the SALES_SOURCE_DATA table.

@\l ab\ins_sal es_source_dat a. sql

c. Display the structure of the SALES _SOURCE_DATA table.
DESC sal es_source _data

d. Display the records from the SALES  SOURCE_DATA table.
SELECT * FROM SALES_ SOURCE_DATA,

e. Runthecre_sal es_i nfo. sql scriptinthelab folder to create the SALES | NFOtable.
@\ | ab\ cre_sal es_i nfo. sql

f. Display the structure of the SALES_| NFOtable.
DESC sales_info

g. Write a query to do the following:

— Retrieve the details of the employee ID, week 1D, sales on Monday, sales on Tuesday,
sales on Wednesday, sales on Thursday, and sales on Friday from the
SALES SOURCE_DATATtable.

— Build atransformation such that each record retrieved from the
SALES SOURCE_DATA tableis converted into multiple records for the
SALES | NFOtable.

Hint: Useapivoting | NSERT statement.

Introduction to Oracle9i: SQL A-65



| NSERT ALL

Practice 20 Solutions (continued)

| NTO sal es_info VALUES (enpl oyee i d,
| NTO sal es_info VALUES (enpl oyee i d,
I NTO sal es_i nfo VALUES (enpl oyee_id,
I NTO sal es_i nfo VALUES (enpl oyee_id,
| NTO sal es_info VALUES (enpl oyee i d,

week id,
week id,
week id,
week id,
week id,

sal es_MON)
sal es_TUE)

sal es_VED)
sal es_THUR)
sal es_FRI)

SELECT EMPLOYEE | D, week id, sales MN, sal es TUE,
sal es_ VED, sales THUR sales FRI FROM sal es_source_dat a;

h. Display the records from the SALES | NFOtable.
SELECT * FROM sal es_i nf o;

9. a Createthe DEPT_NAMED | NDEX table based on the following table instance chart. Name
the index for the PRI MARY KEY column as DEPT_PK | DX.

COLUMN Name Deptno Dname
Primary Key Yes

Datatype Number VARCHAR?2
Length 4 30

CREATE TABLE DEPT_NAMED | NDEX

(dept no NUMBER( 4)

PRI MARY KEY USI NG | NDEX

( CREATE | NDEX dept pk_idx ON
DEPT_NAMED | NDEX( dept no) ),
dnanme VARCHAR2( 30));

b. Query the USER | NDEXES table to display the | NDEX_NAME for the
DEPT_NAMED | NDEX table.

SELECT | NDEX_NAME, TABLE_NAME
FROM USER | NDEXES
WHERE TABLE_NAME = ' DEPT_NAMED_ | NDEX ;

Introduction to Oracle9i: SQL A-66



Practice D Solutions

1. Write ascript to describe and sdlect the data from your tables. Use CHR( 10) inthe select list
with the concatenation operator ( ||) to generate aline feed in your report Save the output of
thescriptintony_fi | el. sql . To save thefile, select the FI LE option for the output, and
execute the code. Remember to save thefilewitha. sql extension. To execute the
my_filel.sql, browsetolocate the script, load the script, and execute the script.

SET PAGESI ZE 0

SELECT 'DESC ' || table_nane || CHR(10) ||
"SELECT * FROM' || table name || ';’

FROM user _tabl es

/

SET PAGESI ZE 24

SET LI NESI ZE 100

2. Use SQL to generate SQL statements that revoke user privileges. Use the data dictionary
views USER_TAB_PRI VS_MADE and USER_COL_ PRI VS_MADE.

a. Executethescript\ | ab\ pri vs. sql to grant privilegesto the user SYSTEM

b. Query the data dictionary viewsto check the privileges. In the sample output shown, note
that the datain the GRANTOR column can vary depending on who the GRANTOR is. Also
the last column that has been truncated is the GRANTABLE column.

COLUWN grantee FORVAT Al10
COLUWN t abl e_nane FORVAT A10
COLUWN colum_nane FORMAT Al0
COLUWN grantor FORVAT Al10
COLUWN privilege FORVAT A10
SELECT *

FROM user _tab_privs_nmade
VHERE grantee = ' SYSTEM ;

SELECT *

FROM user _col _privs_made

VHERE grantee = ' SYSTEM ;

Introduction to Oracle9i: SQL A-67



Practice D Solutions (continued)

¢. Produce a script to revoke the privileges. Save the output of the script into
nmy file2.sql.Tosavethefile, select the FI LE option for the output, and execute the
code. Remember to save thefilewitha. sql extension. To executetheny_fil e2. sql ,
browse to locate the script, load the script, and execute the script.

SET VERI FY OFF
SET PAGESI ZE 0

SELECT "REVOKE ' || privilege || * ON' ||

table_nanme || ° FROM system’

FROM user_tab_privs_made

WHERE grantee = ' SYSTEM

/

SELECT DI STI NCT "REVOKE ' || privilege || ° ON' ||
table_nanme || ° FROM systeny’

FROM user_col privs_made

WHERE grantee = ' SYSTEM

/

SET VERI FY ON
SET PAGESI ZE 24

Introduction to Oracle9i: SQL A-68



B

Table Descriptions
and Data



COUNTRI ES Table

DESCRI BE countri es

b _Name _ Nullz |
[COUNTRY_ID |MOT MULL [CHAR2) |
(COUNTRY_MNAME I |[ARCHARZ(40) |
IREGION_ID I [NUMBER |

SELECT * FROM countri es;

Fﬁ\i‘ e
ICA  ||Canada 2

|DE ||German3,r 1 |
UK ||United Kingdaorm 1|
|US ||United States of America || 2 |

Introduction to Oracle9i: SQL B-2




DEPARTMENTS Table

DESCRI BE departnents

| Name | Null? |
IDEPARTMENT_ID MOT MULL MUMBER(4) |
IDEPARTMENT_MAME INOT NULL [VARCHARZ(30) |
IMAMAGER_ID | MUMBER(E) |
ILOCATION_ID | MUMBER(4) |

SELECT * FROM depart nments;

DEPARTMENT _ID i| DEPARTMENT MAME

| MAMAGER ID || LOCATION ID |

|

| 10 || Administration | 200 || 1700 |
| 20 |Marketing I 201 || 1800 |
| 50 || Shipping I 124 || 1500 |
| B0 (IT I 103 || 1400 |
| a0 |[Sales | 149 | 2500 |
| 90 || Executive I 100 || 1700 |
| 110 |[Accounting I 205 || 1700 |
| 190 |Gontracting | I 1700 |

g rows selected.

Introduction to Oracle9i: SQL B-3




EMPLOYEES Table
DESCRI BE enpl oyees

| Name | Null? | Type
[EMPLOYEE_ID MOT MULL INUMBER(B)
FIRST_MAME | WARCHARZ (20)
ILAST _MNAME IMOT MULL WARCHARZ (25)
[EMAIL IMOT MULL WARCHARZ (28)
IPHOME_MUMBER | WARCHAR (20)
IHIRE_DATE MOT MULL IDATE

UOB_ID IMOT MULL WARCHARZ (10)
|SALARY | INUMBER(S,2)
(COMMISSION_PCT | IMUMBER(2,2)
IMANAGER_ID | INUMBER(E)
IDEPARTMENT_ID | INUMBER(4)

SELECT * FROM enpl oyees;

[EMPLOYEE_ID|[FIRST_NAME[LAST NAME| EMAIL || PHONE NUMBER |HIRE_DATE

| 100 |Steven King SKING 515.123 4567 17-JUN-B7
| 101 |Meena Kachhar  |[MKOCHHAR (515123 4568 21-5EP-89
| 102 ||Lex DeHaan  |LDEHAAN ||515.123 4569 113-JAN-33
| 103 ||Alexander  |Hunold \WHUNOLD  ||590.423 4567 03-JAMN-30
| 104 |Bruce [Emst [BERNST  |490.423.4565 21-MAY-9 1
| 107 ||Diana ILarentz IDLORENTZ ||590.423 5567 07-FEB-29
| 124 ||Kewin Mourgos  |KMOURGOS)|[B50.123 5234 11B-NOY-99
| 141 [Trenna IRajs TRAJS I650.121.8009 17-0CT-35
| 142 [Cuntis IDavies ICDAVIES  650.121.2994 [29-JAN-97
| 143 ||Randall IMatos IRMATOS  ||B50.121.2874 115-MAR-98
| 144 |Peter W argas IPYARGAS |[B50.121.2004 09-JUL-95
| 143 ||[Eleni \Zlotkey [EZLOTKEY ||011.44.1344 428015 [23-JAN-00
| 174 |[Ellen el [EABEL I011.44.1644 429267 [11-MAY-36
| 176 [Jonathon  |Taylor ITAYLOR  |D11.44.1644 429265 [24-MAR-95
| 178 |[Kirnberely  |Grant IKGRANT |I011.44 1644 429263 [24-MAY-29
| 200 |Jennifer Wi/halen WYHALEN |1515,123.4444 17-SEP-87
| 201 |Michael Hartstein  MHARTSTE ||[515.123 5555 117-FEB-96
| 202 |Pat Fay IPFAY [603.123 6EGE N7-AUG-97
| 205 ||Shelley Higgins ISHIGGING  ||515.123.8080 07-JUIM-24
| 206 | [Williarn Gistz WGIETZ  (15.123.8181 07-JUN-04

20 rows selected.

Introduction to Oracle9i: SQL B-4




EMPLOYEES Table (continued)

| JOB.ID |[SALARY|COMMISSION_PCT|MANAGER _ID [DEPARTMENT ID

AD PRES | 24000 | | | 50 |
AD_P | 17000 | I 100 | 90 |
D WP | 17000 | I 100 || 30 |
IT PROG || 2000 I 102 || B0 |
IT PROG | GO00 | | 103 || GO |
IT_PROG || 4200 || I 103 | BO |
ST _MAN | as00 || I 100 || 50 |
ST CLERK || 3500 I 124 || 50 |
ST CLERK | 3100 | | 124 || 50 |
IST_CLERK || 2600 || I 124 || 50 |
IST_CLERK || 2500 || I 124 | 50 |
=4 MAN | 10800 || 2| 100 || a0 |
|54 REP | 11000 | 3|| 143 || EiIII|

=48 _FHEF 5800 | 144
IWIWII—II—II—I

AD ASST | 4400 | 101 || 10|
MK MAN | 13000 || || 100 || 20|
MK REP | 6000 I 201 || 20|
wC MGR | 12000 || I 101 || 110 |
AC ACCOUNT| 8300 || | 205 | 10|

20 rovwes selected.

Introduction to Oracle9i: SQL B-5



JOBS Table

DESCRI BE j obs

| Name | Null? | Type I
JOB_ID [MOT MULL [WARCHARZ(10) |
JOBE_TITLE INOT NULL [VARCHARZ(3S) |
IMIN_SALARY I MUMBER(E) |
IMAX_SALARY | NUMBER(E) |

SELECT * FROM j obs;

|l JoBID | JOB_TITLE | MIN_SALARY | MAX_SALARY |
AD PRES |President | 20000 || 40000 |
AD_P |Administration Vice Prasident || 15000 || 30000 |
AD_ASST | Administration Assistant | 3000 || 6000 |
A MGR |Accounting Manager | g200 || 16000 |
AC_ACCOUNT  ||Public Accountant | 4200 || 9000 |
|SA_WIAN | Sales Manager | 10000 || 20000 |
=4 _REP |Sales Representative | G000 | | 12000 |
|ST_MAN | Stock Manager | 5500 || 8500 |
|ST_CLERK | Stock Clerk | 2000 || 5000 |
IT_PROG |Programmer | 4000 || 10000 |
MK MR | Markeating Manager | 9000 | | 15000 |
IMK_REP |Marketing Representative | 4000 || 9000 |

12 rovws selected.

Introduction to Oracle9i: SQL B-6




JOB_GRADES Table

DESCRI BE j ob_grades

[GRADE_LEVEL
LOWEST SAL
HIGHEST_SAL

[vARCHARZ(3)
[NURBER
|NUMBER

SELECT * FROM j ob_grades;

B rows selected.

Introduction to Oracle9i: SQL B-7



JOB_H STORY Table

DESCRI BE j ob_hi story

| Name | Null? 1 |
[EMPLOYEE_ID [MOT NULL | [MUMBER(E) |
|START_DATE [MOT MULL [DATE |
[END_DATE [MOT MULL |DATE |
\JOB_ID [MOT NULL | [WARCHARZ(10) |
\DEPARTMENT_ID I [MUMBER(4) |
SELECT * FROM j ob_hi story;
| EMPLOYEE ID | START DAT |END DATE | JOBID | DEPARTMENT ID
| 102 [13-JANS3  |[24-JUL98  |IT_PROG I B0 |
| 101 ||[21-5EP-83  [27-0CT-93  ||AC_ACCOUNT || 110 |
| 101 ||[28-0CT-93  15-MARS7  ||AC_MGR I 110 |
| 201 |17-FEB-95  |[19-DEC99  |MK_REP I 20 |
| 114 |24-MARSE  |[31-DECO3  ||ST_CLERK I a0 |
| 122 |[01-JaN-99  |[31-DEC-93  |ST_CLERK I 50 |
| 200 (17-SEP-87  |[17-JUN-33 [|AD_ASST I 90 |
| 176 ||[24-MAR-28  [31-DEC-98  ||SA_REF I a0 |
| 176 |[01-JAN-99  [31-DEC-29  |5A_MAM I a0 |
| 200 [01-JUL94  [31-DECOS  ||AC ACCOUNT || 90 |

10 rowes selected.

Introduction to Oracle9i: SQL B-8




LOCATI ONS Table

DESCRI BE | ocati ons

| Name || Mull? || Type |
ILOCATION_ID NOT MULL NUMBER(4) |
|STREET_ADDRESS | [WARCHARZ(4D) |
IPOSTAL_CODE | [WARCHARZ(12) |
cITY (MOT MULL [WARCHARZ(3O) |
ISTATE_PROVINCE | [VARCHARA(E) |
ICOUNMTRY_ID | |CHAR(2) |

SELECT * FROM | ocati ons;

ILOCATION ID|STREET_ADDRESS |[POSTAL CODE| CITY ||STATE_PROVINCE |[CO |
1400 ERDEI“”E'E"”E“””':“Y 26192 Southlake |Texas us
1500 [2011 Interiors Blvd 99236 south San o ieormia Us
Francisco
| 1700 |[2004 Charade Rd  ||98199 |Seattle  |Washingtaon us |
| 1800 |460 Bloor St. Wy, |[OMMSS 1¥8  |Toronto  ||[Ontario |ca |
Magdalen Centre,
2500 |The Cxford Science |08 978 Oxfard Oxford LIk
Park

Introduction to Oracle9i: SQL B-9



REG ONS Table

DESCRI BE r egi ons

(MOT NULL MUMBER |

IREGION_NAME | 'ARCHARZ(25) |

SELECT * FROM regi ons;

1 ||Eur|:|pe

3 ||Asia
4 |Middle East and Africa

| |
| 2 ||,ﬂameri|:as |
| |
| |

Introduction to Oracle9i: SQL B-10



Using SQL*Plus

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Schedule: Topic Timing
Lecture 20 minutes
Totd 20 minutes



Objectives

After completing this appendix, you should be able to
do the following:

® Loginto SQL*Plus

* Edit SQL commands

®* Format output using SQL*Plus commands
* Interact with script files

C-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

Y ou may want to create SELECT statements that can be used again and again. Thislesson also covers

the use of SQL*Plus commands to execute SQL statements. Y ou learn how to format output using
SQL*Plus commands, edit SQL commands, and save scriptsin SQL*Plus.

Introduction to Oracle9i: SQL C-2




SQL and SQL*Plus Interaction

SQL statements *
Server
SQL*Plus 1 1 ]
N
1 1
* Query results |

Buffer (—‘

[~
LS
<

scripts

C-3 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL and SQL*Plus

SQL isacommand language for communication with the Oracle9i Server from any tool or
application. Oracle SQL contains many extensions. When you enter a SQL statement, itisstoredin a
part of memory called the SQL buffer and remains there until you enter a new SQL statement.

SQL*Plusis an Oracle tool that recognizes and submits SQL statementsto the Oracle9i Server for
execution. It contains its own command language.

Features of SQL

SQL can be used by arange of users, including those with little or no programming
experience.

It isanonprocedural language.
It reduces the amount of time required for creating and maintaining systems.
It is an English-like language.

Features of SQL*Plus

SQL*Plus accepts ad hoc entry of statements.

It accepts SQL input from files.

It provides aline editor for modifying SQL statements.
It controls environmental settings.

It formats query results into basic reports.

It accesses |ocal and remote databases.

Introduction to Oracle9i: SQL C-3




SQL Statements versus SQL*Plus
Commands

SQL
* A language
* ANSI standard

» Keywords cannot be
abbreviated

» Statements manipulate
data and table
definitions in the
database

SQL*Plus
* An environment
» Oracle proprietary

« Keywords can be
abbreviated

e Commands do not
allow manipulation of
values in the database

SQL
statements

SQL
buffer

D

SQL*Plus
commands

SQL* us
ko rfer

D

c-4

Copyright © Oracle Corporation, 2001. All rights reserved.

SQL and SQL*Plus (continued)

The following table compares SQL and SQL* Plus:

SQL

SQL*Plus

Is alanguage for communicating with the Oracle
Server to access data

Recognizes SQL statements and sends them to the
server

Is based on American National Standards
Ingtitute (ANSI) standard SQL

Isthe Oracle proprietary interface for executing
SQL statements

Manipulates data and table definitions in the
database

Does not allow manipulation of valuesin the
database

Is entered into the SQL buffer on one or more
lines

Is entered oneline at atime, not stored in the SQL
buffer

Does not have a continuation character

Uses a dash (-) as a continuation character if the
command is longer than oneline

Cannot be abbreviated

Can be abbreviated

Uses atermination character to execute
commands immediately

Does not require termination characters; executes
commands immediately

Uses functions to perform some formatting

Uses commands to format data

Introduction to Oracle9i: SQL C-4




Overview of SQL*Plus

Log in to SQL*Plus.
Describe the table structure.
Edit your SQL statement.
Execute SQL from SQL*Plus.

Save SQL statements to files and append SQL
statements to files.

Execute saved files.
Load commands from file to buffer

to edit.
C-5 Copyright © Oracle Corporation, 2001. All rights reserved.
SQL*Plus
SQL*Plusis an environment in which you can do the following:

*  Execute SQL statements to retrieve, modify, add, and remove data from the database

» Format, perform calculations on, store, and print query resultsin the form of reports
» Create script filesto store SQL statements for repetitive use in the future
SQL* Plus commands can be divided into the following main categories:

Category Purpose
Environment Affect the general behavior of SQL statements for the session
Format Format query results

File manipulation Save, load, and run script files

Execution Send SQL statements from SQL buffer to the Oracle server

Edit Modify SQL statements in the buffer

Interaction Create and pass variables to SQL statements, print variable values, and
print messages to the screen

Miscdlaneous Connect to the database, manipulate the SQL*Plus environment, and

display column definitions

Introduction to Oracle9i: SQL C-5




Logging In to SQL*Plus

* From aWindows environment:

User Name: [scott
Password: i
Host String: [
| oK | Cancel

* From acommand line:

sgl pl us [usernane[/ password
[ @lat abase] ] ]

C-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Logging In to SQL*Plus
How you invoke SQL * Plus depends on which type of operating system or Windows environment you

are running.
To log in through a Windows environment:
1. Select Start > Programs > Oracle for Windows NT > SQL*Plus.

2. Fill in the username, password, and database name.
To log in through a command line environment:

1. Logon to your machine.
2. Enter the SQL*Plus command shown inthe dide.

In the syntax:
user nane your database username.

passwor d your database password (if you enter your password here, it isvisible.)

@lat abase  the database connect string.
Note: To ensure the integrity of your password, do not enter it at the operating system prompt.
Instead, enter only your username. Enter your password at the Password prompt.
After you log in to SQL*Plus, you see the following message (if you are using SQL* Plus version 9i):

Devel opnment on Tue Jan 9 08:44:28 2001

SQ*Plus: Release 9.0.1.0.0 -
rights reserved.

(c) Copyright 2000 Oracle Corporation. All

Introduction to Oracle9i: SQL C-6



Displaying Table Structure

Use the SQL*Plus DESCRI BE command to display the
structure of a table.

DESC] Rl BE] tabl enane

C-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Table Structure

In SQL*Plus you can display the structure of atable using the DESCRI BE command. The result of

the command is a display of column names and datatypes aswell as an indication if a column must
contain data.

In the syntax:

t abl enane  the name of any existing table, view, or synonym that is accessible to the
user

To describe the JOB_ GRADES table, use this command:

SQL> DESCRI BE j ob_gr ades

Nanme Nul | ? Type
GRADE_LEVEL VARCHAR2( 3)
LOWEST_SAL NUMBER

HI GHEST_SAL NUVMBER

Introduction to Oracle9i: SQL C-7



Displaying Table Structure

SQL>| DESCRI BE| depart nent s

Nane Nul | ? Type
DEPARTMENT | D NOT NULL NUMBER( 4)
DEPARTIVENT _NANME NOT NULL VARCHAR2( 30)
MANAGER | D NUVBER( 6)
LOCATION I D NUVBER( 4)

C-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Table Structure (continued)
The example in the dide displays the information about the structure of the DEPARTMVENTS table.
In the result:

Nul | ? specifies whether a column must contain data; NOT NULL indicates that a
column must contain data

Type displays the data type for a column

The following table describes the data types:

Data type Description
NUMBER( p, S) Number value that has a maximum number of digits p, the number
of digitsto theright of the decimal point s
VARCHAR2( s) Variable-length character value of maximum size s
Date and time value between January 1, 4712 B.C., and December
DATE 31, 9999 A.D.
CHAR( s) Fixed-length character value of size s

Introduction to Oracle9i: SQL C-8



SQL*Plus Editing Commands

e Al PPEND] t ext
e CJHANGE] / old / new

e C[HANGE] / text /
e CL[EAR] BUFF[ER]

e DEL
e DEL n
e DEL mn
C-9 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL*Plus Editing Commands
SQL*Plus commands are entered one line at atime and are not stored in the SQL buffer.

Command Description
Al PPEND] t ext Adds text to the end of the current line
C[HANGE] / old / new Changes ol d text to newin the current line
Cl HANGE] / text / Ddetest ext fromthecurrent line
CL[EAR] BUFF[ER] Deletes all lines from the SQL buffer
DEL Ddetes current line
DEL n Ddeteslinen
DEL m n Ddetes lines mto n inclusive

Guidelines

If you press [Enter] before completing acommand, SQL*Plus prompts you with aline number.

Y ou terminate the SQL buffer either by entering one of the terminator characters (semicolon or
dlash) or by pressing [Enter] twice. The SQL prompt then appears.

Introduction to Oracle9i: SQL C-9




SQL*Plus Editing Commands

* | [ NPUT]
* | [NPUT] text
e L[IST]
® L[IST] n
e L[IST] mn
° RIUN
*n
* n text
* 0 text
C-10

Copyright © Oracle Corporation, 2001. All rights reserved.

SQL*Plus Editing Commands (continued)

Command Description

I'[ NPUT] Inserts an indefinite number of lines

I [ NPUT] text Inserts aline consisting of t ext

L[ 1 ST] Listsal linesin the SQL buffer

L[I1ST] n Lists oneline (specified by n)

L[I1ST] mn Listsarange of lines (mto n) inclusive

R UN] Displays and runs the current SQL statement in the buffer
n Specifies the line to make the current line

n text Replaceslinen witht ext

0 text Inserts aline beforeline 1

Note: Y ou can enter only one SQL* Plus command per SQL prompt. SQL* Plus commands are not
stored in the buffer. To continue a SQL* Plus command on the next line, end the first line with a

hyphen (-).

Instructor Note

Show students the use of the commonly used editing commands, such as Al PPEND] , C[ HANGE] ,
DEL, L[ I ST],and R UN] .

Introduction to Oracle9i: SQL C-10




Using LI ST, n, and APPEND

SQ.> LIST
1 SELECT | ast_nane
2* FROM enpl oyees
SQ> 1
1* SELECT | ast _nane
SQ> A, job_id
1* SELECT | ast_nane, job_id
SQ> L
1 SELECT |ast_nane, job_id
2* FROM enpl oyees
C-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Using LI ST, n, and APPEND

 Usethel[ | ST] command to display the contents of the SQL buffer. The* besideline2in
the buffer indicatesthat line 2 is the current line. Any edits that you made apply to the current

line.

»  Change the number of the current line by entering the number of the line you want to edit. The

new current lineis displayed.

e Usethe Al PPEND] command to add text to the current line. The newly edited lineis
displayed. Verify the new contents of the buffer by using the LI ST command.

Note: Many SQL*Plus commandsincluding LI ST and APPEND can be abbreviated to just their first

letter. LI ST can be abbreviated to L, APPEND can be abbreviated to A.

Instructor Note

Show students the use of the abbreviated editing commands, using uppercase and lowercase—for

example, Afor APPEND, or L for LI ST.

Introduction to Oracle9i: SQL C-11




Using the CHANGE Command

SQ> L
1* SELECT * from enpl oyees

SQL> c/ enpl oyees/ depart nents

1* SELECT * from departnents

SQ> L
1* SELECT * from departnents

C-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the CHANGE Command
* UselL[ | ST] todisplay the contents of the buffer.

* Usethe (] HANGE] command to ater the contents of the current linein the SQL buffer. In this
case, replace the employees table with the departments table. The new current lineis displayed.

* UsetheL[ | ST] command to verify the new contents of the buffer.

Introduction to Oracle9i: SQL C-12



SQL*Plus File Commands

* SAVE fil enane
e CET fil enane

e START fil enane
e @fil enane

e EDIT fil enane
e SPOOL fil enane
* EXIT

C-13

Copyright © Oracle Corporation, 2001. All rights reserved.

SQL*Plus File Commands

SQL statements communicate with the Oracle server. SQL* Plus commands control the environment,
format query results, and manage files. Y ou can use the commands described in the following table:

Command

Description

SAV[E] filenanme [.ext]
[ REP[ LACE] APP[ END] ]

Saves current contents of SQL buffer to afile. Use APPEND
to add to an existing file; use REPLACE to overwrite an
existing file. The default extensionis. sql .

GET filenane [.ext]

Writes the contents of a previously saved file to the SQL
buffer. The default extension for the filenameis.sql .

STA[RT] filenanme [.ext]

Runs a previously saved command file

@fil enane

Runs a previously saved command file (same as START)

ED[ 1 1]

Invokes the editor and saves the buffer contentsto afile
named af i edt . buf

ED[IT] [fil ename[.ext]]

Invokes the editor to edit contents of a saved file

SPQ Q] [filename[.ext]|
OFF| QUT]

Stores query resultsin afile. OFF closes the spool file. OUT
closes the spool file and sends the file results to the system
printer.

EXIT

Leaves SQL*Plus

Introducti

on to Oracle9i: SQL C-13




Using the SAVE and START Commands

SQ> L
1 SELECT | ast_nane, manager id, departnent _id
2* FROM enpl oyees

SQ.>/ SAVE ny_query

Created file ny_query

SQ.> START ny_query

LAST NAME MANAGER | D DEPARTMENT | D
Ki ng 90
Kochhar 100 90

20 rows sel ected.

C-14 Copyright © Oracle Corporation, 2001. All rights reserved.

SAVE

Use the SAVE command to store the current contents of the buffer in afile. In thisway, you can store
frequently used scripts for usein the future.

START
Use the START command to run ascript in SQL* Plus.
EDI T

Usethe EDI T command to edit an existing script. This opens an editor with the script fileinit. When
you have made the changes, exit the editor to return to the SQL* Plus command line.

Introduction to Oracle9i: SQL C-14



Summary

Use SQL*Plus as an environment to:
®* Execute SQL statements

* Edit SQL statements

* Format output

® Interact with script files

C-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

SQL*Plusis an execution environment that you can use to send SQL commands to the database
server and to edit and save SQL commands. Y ou can execute commands from the SQL prompt or
from ascript file.

Introduction to Oracle9i: SQL C-15



Introduction to Oracle9i: SQL C-16



Writing Advanced Scripts

Copyright © Oracle Corporation, 2001. All rights reserved.

Schedule: Timing Topic
30 minutes Lecture
20 minutes Practice

50 minutes Totd



Objectives

After completing this appendix, you should be able

to do the following:

®* Describe the types of problems that are solved by
using SQL to generate SQL

* Write a script that generates a script of DROP
TABLE statements

* Write a script that generates a script of | NSERT

| NTOstatements

D-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this appendix, you learn how to write a SQL script to generates a SQL script.

Introduction to Oracle9i: SQL D-2




Using SQL to Generate SQL

Data

E

SQL script

* SQL can be used to generate scripts in SQL

» The data dictionary

— Is a collection of tables and views that contain database
information

— Is created and maintained by the Oracle server

D-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Using SQL to Generate SQL
SQL can be a powerful tool to generate other SQL statements. In most cases this involves writing a
script file. You can use SQL from SQL to:
» Avoid repetitive coding
* Accessinformation from the data dictionary
» Drop or re-create database objects
*  Generate dynamic predicates that contain run-time parameters
The examples used in this lesson involve selecting information from the data dictionary. The data
dictionary is acollection of tables and views that contain information about the database. This

collection is created and maintained by the Oracle Server. All data dictionary tables are owned by the
SYS user. Information stored in the data dictionary includes names of the Oracle Server users,
privileges granted to users, database object names, table constraints, and audition information. There
are four categories of datadictionary views. Each category has a distinct prefix that reflectsits
intended use.

Prefix Description

USER_ Contains details of objects owned by the user

ALL_ Contains details of objects to which the user has been granted accessrights, in
addition to objects owned by the user

DBA_ Contains details of userswith DBA privileges to access any object in the database

V$_ Stored information about database server performance and locking; available only to
the DBA

Introduction to Oracle9i: SQL D-3




Creating a Basic Script

SELECT ' CREATE TABLE * || table_nane || ' _test ’
|| *"AS SELECT * FROM ' || tabl e_nane
||° WHERE 1=2;°

AS "Create Table Script"”
FROM  user _tabl es;

| Create Table Script

[CREATE TABLE COUNTRIES_test AS SELECT * FROM COUNTRIES WHERE 1=2;
[CREATE TABLE DEPARTMENTS_test AS SELECT * FROM DEPARTMENTS WHERE 1=2;
[CREATE TABLE EMPLOYEES_test AS SELECT * FROM EMPLOYEES WHERE 1=2;
[CREATE TABLE JOBS_test AS SELECT * FROM JOBS WHERE 1=2;

[CREATE TABLE .JOB_GRADES_test AS SELECT * FROM JOB_GRADES WHERE 1=2;
[CREATE TABLE JOB_HISTORY test AS SELECT * FROM JOB_HISTORY WHERE 1=2;
[CREATE TABLE LOCATIONS_test AS SELECT * FROM LOCATIONS WHERE 1=2;
[CREATE TABLE REGIONS_test AS SELECT * FROM REGIONS WHERE 1=2;

8 rows selected.

D-4 Copyright © Oracle Corporation, 2001. All rights reserved.

A Basic Script

The example in the dide produces areport with CREATE TABLE statements from every table you
own. Each CREATE TABLE statement produced in the report includes the syntax to create atable
using the table name with a suffix of _t est and having only the structure of the corresponding
exigting table. The old table name is obtained from the TABLE_NAME column of the data dictionary
view USER_TABLES.

The next step isto enhance the report to automate the process.

Note: Y ou can query the data dictionary tables to view various database objects that you own. The
data dictionary views frequently used include:

 USER TABLES: Displays description of the user’s own tables

e USER OBJECTS: Displays dl the objects owned by the user

e USER TAB PRI VS MADE: Displaysall grants on objects owned by the user

e USER COL_PRI VS MADE: Displaysal grants on columns of objects owned by the user

Introduction to Oracle9i: SQL D-4



Controlling the Environment

SET ECHO OFF
SET FEEDBACK COFF

SET PAGESI ZE 0 +—— Set system variables

to appropriate values.

SPOCL dr opem sql
SQL STATEMENT

SPOOL OFF

SET FEEDBACK ON

SET PAGESI ZE 24 Set system variables
SET ECHO ON back to the default

value.

D-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling the Environment

In order to execute the SQL statements that are generated, you must capture them in a spoal file that
can then be run. Y ou must also plan to clean up the output that is generated and make sure that you

suppress elements such as headings, feedback messages, top titles, and so on. Y ou can accomplish all
of this by using iSQL* Plus commands.

Introduction to Oracle9i: SQL D-5




The Complete Picture

SET ECHO OFF
SET FEEDBACK OFF
SET PAGESI ZE O

SELECT ' DROP TABLE ' || object_name || ’;’
FROM user _obj ects

WHERE object _type = ' TABLE

/

SET FEEDBACK ON
SET PAGESI ZE 24
SET ECHO ON

D-6 Copyright © Oracle Corporation, 2001. All rights reserved.

The Complete Picture

The output of the command on the dideis saved into afilecalled dr opem sqgl usingtheFi | e
Output option in iSQL* Plus. Thisfile contains the following data. This file can now be started from
the iSQL* Plus by locating the script file, loading it, and executing it.

| 'DROPTABLET|OBJECT HAME](;
|DROF‘ TABLE COUNTRIEE;

|DROF‘ TABLE DEFPARTMENTS;

|DRCIF' TABLE EMFPLOYEES;,

|DROF‘ TABLE JOBS,

|DROF‘ TABLE JOB_GRADES;

|DRCIF' TABLE JOB_HISTOR?Y,

|DROF‘ TABLE LOCATIONS;

|DROF‘ TABLE REGIONS;

Note: By default, files are spooled into the ORACLE_HOVE\ ORANT\ BI Nfolder in Windows NT.

Instructor Note:
IniSQL*Plus version 9.0.1.0.1, the output file may contain html tags. Thisis a documented bug.

Introduction to Oracle9i: SQL D-6



Dumping the Contents of a Table to a File

SET HEADI NG OFF ECHO OFF FEEDBACK OFF
SET PAGESI ZE 0O

SELECT

"I NSERT | NTO departnments_test VALUES

(" || departnent_id || ', '’ || departnent_nane ||
7 || locationiid || 7))

AS "lInsert Statenments Script”

FROM departnents

/

SET PAGESI ZE 24
SET HEADI NG ON ECHO ON FEEDBACK ON

D-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Dumping Table Contents to a File
Sometimesit is useful to have the values for the rows of atable in atext filein the format of an
I NSERT | NTO VALUES statement. This script can be run to popul ate the table, in case the table
has been dropped accidentaly.
The example in the dide produces | NSERT statements for the DEPARTMENTS _TEST table,
captured inthedat a. sql fileusingthe Fi | e Output option iniSQL*Plus.
The contents of thedat a. sql script file are asfollows:
| NSERT | NTO depart nents_test VALUES
(10, "Adninistration', 1700);
| NSERT | NTO departnments_t est VALUES
(20, ’'Marketing , 1800);
| NSERT | NTO departnments_test VALUES
(50, ’Shipping, 1500);
| NSERT | NTO departnments_test VALUES
(60, "I1T, 1400);

Introduction to Oracle9i: SQL D-7



Dumping the Contents of a Table to a File

Source

Result

111X1!l IXI

"| | depart nent _nane| |

"Adm ni stration’

D-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Dumping Table Contents to a File (continued)

Y ou may have noticed the large number of single quotesin the dide on the previous page. A set of
four single quotes produces one single quote in the final statement. Also remember that character and

date values must be surrounded by quotes.

Within a string, to display one single quote, you need to prefix it with another single quote. For
example, in the fifth example in the dide, the surrounding quotes are for the entire string. The second
quote acts as a prefix to display the third quote. Thus the result is one single quote followed by the

parenthesis followed by the semicolon.

Introduction to Oracle9i: SQL D-8




Generating a Dynamic Predicate

COLUWN ny_col NEW VALUE dyn_where_cl ause

SELECT DECODE(’ &&deptno’, null,
DECODE (' &&hiredate’, null, ' ',

"WHERE hi re_dat e=TO DATE(' '’ ||’ &hiredate’ ', DD- MON-YYYY' ')'),
DECODE (' &&hiredate’, null,

"WHERE departnent _id ="' || ’&&deptno’,

"WHERE departnent _id ="' || '&&deptno’ ||

" AND hire_date = TO DATE(' "' ||’ &hiredate’’,’ ' DD- MON-YYYY' ') ))

AS ny_col FROM dual ;

SELECT | ast _nanme FROM enpl oyees &dyn_where_cl ause;

D-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Generating a Dynamic Predicate

The example in the dide generates a SELECT statement that retrieves data of al employeesin a
department who were hired on a specific day. The script generates the WHERE clause dynamically.

Note: Once the user variable isin place, you need to use the UNDEFI NE command to deleteiit.

Thefirst SELECT statement prompts you to enter the department number. If you do not enter any
department number, the department number is treated as null by the DECODE  function, and the user
isthen prompted for the hire date. If you do not enter any hire date, the hire date is treated as null by
the DECQODE function and the dynamic WHERE clause that is generated is aso anull, which causes the
second SELECT statement to retrieve al rows from the EMPLOYEES table.

Note: The NEW V[ ALUE] variable specifies avariable to hold a column value. Y ou can reference the
variablein TTI TLE commands. Use NEW VAL UE to display column values or the date in the top
title. Y ou must include the column in a BREAK command with the SKI P PAGE action. The variable
name cannot contain a pound sign (#). NEW VALUE is useful for master/detail reportsin which there
isanew master record for each page.

Instructor Note
To explain the example, run the script deno\ dyn. sql .

Introduction to Oracle9i: SQL D-9



Generating a Dynamic Predicate (continued)
Note: Here, the hire date must be entered in DD- MON- YYYY format.
The SELECT statement in the previous dide can be interpreted as follows:
IF (<<deptno>> isnot entered) THEN
IF (<<hiredate>> isnot entered) THEN
return empty string
ELSE

return the string ‘WHERE hire_date = TO_DATE('<<hiredate>>", 'DD-MON-YYYY')’
ELSE

IF (<<hiredate>> is not entered) THEN

return the string ‘WHERE department_id = <<deptno>> entered'
ELSE

return the string “WHERE deparment_id = <<deptno>> entered
AND hire_date=TO_DATE( <<hiredate>>", ' DD-MON-YYYY')’
END IF

The returned string becomes the value of the variable DYN_ WHERE CL AUSE, that will be used in the
second SELECT statement.

When the first example on the dlide is executed, the user is prompted for the values for DEPTNO and
HI REDATE:

ORACLE iISQL*Plus

Password Log Out Help

Define Substitution Wariables

"deptno” |1D

"hiredate” [17-SEP-1557|

Subimit for Execution Cancel

Thefollowing value for MY_COL is generated:

| MY_COL
[WHERE department_id = 10AND hire_date = TO_DATE(17-SEP-1987", DD-MON-Y Y YY)

When the second example on the dideis executed, the following output is generated:

| LAST_NAME
|Wha|en

Introduction to Oracle9i: SQL D-10



Summary

In this appendix, you should have learned the
following:

®* You can write a SQL script to generate another
SQL script.

® Script files often use the data dictionary.
®* You can capture the output in afile.

D-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

SQL can be used to generate SQL scripts. These scripts can be used to avoid repetitive coding, drop
or re-create objects, get help from the data dictionary, and generate dynamic predicates that contain
run-time parameters.

i SQL* Plus commands can be used to capture the reports generated by the SQL statements and clean
up the output that is generated, such as suppressing headings, feedback messages, and so on.

Introduction to Oracle9i: SQL D-11




Practice D Overview

This practice covers the following topics:

* Writing a script to describe and select the data
from your tables

* Writing a script to revoke user privileges

D-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice D Overview
In this practice, you gain practical experience in writing SQL to generate SQL.

Introduction to Oracle9i: SQL D-12




Practice D

1. Write ascript to describe and select the data from your tables. Use CHR( 10) inthe select list
with the concatenation operator (|| ) to generate aline feed in your report Save the output of
thescriptintorry_fil el. sqgl . To savethefile, select Fi | e option for the output and
execute the code. Remember to save thefilewitha. sql extension. To execute the
my_filel.sqgl, browsetolocatethe script, load the script, and execute the script.

2. Use SQL to generate SQL statements that revoke user privileges. Use the data dictionary views
USER TAB_PRI VS_MADE and USER_COL_PRI VS_MADE.

a. Executethescript\ Lab\ pri vs. sql to grant privilegesto the user SYSTEM

b. Query the data dictionary views to check the privileges. In the sample output shown, note
that the datain the GRANTOR column can vary depending on who the GRANTOR is. Also the
last column that has been truncated is the GRANTABLE column.

| GRANTEE | TABLE_NAME | GRANTOR | PRIVILEGE | GRA | HIE
|SYSTEM DEPARTMENT S SaL2 \ALTER MO [N
ISYSTEM \DEPARTMENT S saL2 \DELETE Mo MO
ISYSTEM \DEPARTMENT S saLz INDEX MO [N
SYSTEM \DEPARTMENT 5 5012 INSERT WO MO
ISYSTEM DEPARTMENT S f=felle; |SELECT Mo [N
ISYSTEM \DEPARTMENT S saLz UPDATE MO [N
SYSTEM DEPARTMENT 5 5012 \REFERENCES WO MO
ISYSTEM DEPARTMENT S f=felle; [OM COMMIT REFRESH Mo [N
ISYSTEM \DEPARTMENT S f=falle; IQUERY REWR ITE Mo MO
SYSTEM DEPARTMENT 5 5012 DEBUG WO MO

10 rows selected.

| GRANTEE | TABLE_NAME | COLUMN_NAM | GRANTOR | PRIVILEGE | GRA
ISYSTEM [EMPLOYEES \JOB_ID f=felle; IUPDATE MO
ISYSTEM [EMPLOYEES ISALARY f=falle; IUPDATE MO

Introduction to Oracle9i: SQL D-13



Practice D (continued)

¢. Produce a script to revoke the privileges. Save the output of the scriptintony_fil e2. sql . To
savethefile, select the Fi | e option for the output, and execute the code. Remember to save the
filewitha. sqgl extension. To executethery fil e2. sql , browseto locate the script, load the
script, and execute the script.

| 'REVOKE’|[PRIVILEGE|["ON'| TABLE_ NAME|'FROMSYSTEM;"

|RE‘-¢’OKE ALTER OM DEFARTMEMNTS FROM system;

|REVOKE DELETE OM DEPARTMEMNTS FROM system;

|RE‘V’DKE INDEX OM DEPARTKWEMNTS FROM systemn;

|REVOKE INSERT OM DEPARTMEMNTS FROM systam;

|RE‘-¢’OKE SELECT O DEPARTMENTS FROM system;

|RE‘~.-"CIKE UFPDATE OM DEFPARTMENTS FROM system;

|RE‘V’DKE REFERENCES OM DEFPARTMEMNTS FROM system;

|REVDKE ON COMMIT REFRESH OM DEPARTMEMNTS FROM systam;

|RE‘-¢’OKE QUERY REWRITE OM DEPARTMEMNTS FROM system;

|RE‘~.-"CIKE DEBUG OM DEPARTMENTS FROM system;

10 rows selected.

| 'REVOKE’||PRIVILEGE||"ON'| TABLE_ NAME|'FROMSYSTEM;"

|REVOKE UPDATE ON EMPLOYEES FROM systern;,

Introduction to Oracle9i: SQL D-14



Oracle Architectural
Components

Copyright © Oracle Corporation, 2001. All rights reserved.

Schedule: Timing Topic
60 minutes  Lecture
60 minutes  Totd



Objectives

After completing this appendix, you should be able
to do the following:

* Describe the Oracle Server architecture and its
main components

® Listthe structures involved in connecting a user
to an Oracle instance

® Listthe stages in processing:
— Queries
— DML statements
— Commits

E-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

This appendix introduces Oracle Server architecture by describing the files, processes, and memory structures
involved in establishing a database connection and executing a SQL command.

Introduction to Oracle9i: SQL E-2



Overview

Instance
User
process SGA Shared pool
Library
Data buffer|| Redo log cache
Server cache buffer Data dict.
process cache
(€1o) @ewd Grod CrPDCeWDGinerd
A

Parameter Data Control Redo
; files files log files
file
Archived
log files
Password
file Database
E-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview

The Oracle Server is an object relational database management system that provides an open, comprehensive,
integrated approach to information management.

Primary Components

There are several processes, memory structures, and filesin an Oracle Server; however, not al of them are
used when processing a SQL statement. Some are used to improve the performance of the database, ensure
that the database can be recovered in the event of a software or hardware error, or perform other tasks
necessary to maintain the database. The Oracle Server consists of an Oracle instance and an Oracle database.

Oraclelnstance

An Oracle instance is the combination of the background processes and memory structures. The instance must
be started to access the datain the database. Every time an instance is started, a system global area (SGA) is
alocated and Oracle background processes are started. The SGA is a memory area used to store database
information that is shared by database processes.

Background processes perform functions on behalf of the invoking process. They consolidate functions that
would otherwise be handled by multiple Oracle programs running for each user. The background processes
perform 1/O and monitor other Oracle processes to provide increased parallelism for better performance and
reliability.

Introduction to Oracle9i: SQL E-3




Primary Components (continued)
Other Processes

The user processis the application program that originates SQL statements. The server process executes the
SQL statements sent from the user process.

Database Files

Database files are operating system files that provide the actual physical storage for database information.
The database files are used to ensure that the datais kept consistent and can be recovered in the event of a
failure of the instance.

Other Files

Nondatabase files are used to configure the instance, authenticate privileged users, and recover the database
in the event of adisk failure.

SQL Statement Processing

The user and server processes are the primary processes involved when a SQL statement is executed;
however, other processes may help the server complete the processing of the SQL statement.

Oracle Database Administrators

Database administrators are responsible for maintaining the Oracle Server so that the server can process
user reguests. An understanding of the Oracle architecture is necessary to maintain it effectively.

Introduction to Oracle9i: SQL E-4



Oracle Database Files

- Database

E-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle Database Files

An Oracle database is a collection of datathat istreated as a unit. The general purpose of a database isto store
and retrieve related information. The database has alogical structure and a physical structure. The physical

structure of the databaseis the set of operating system filesin the database. An Oracle database consists of
three file types:

Datafiles contain the actual datain the database. The datais stored in user-defined tables, but datafiles also
contain the data dictionary, before-images of modified data, indexes, and other types of structures. A database
has at least one data file. The characteristics of datafiles are:

» A datafile can be associated with only one database. Data files can have certain characteristics set so
they can automatically extend when the database runs out of space. One or more datafilesform a
logica unit of database storage called atablespace. Redo logs contain arecord of changes made to the
database to enable recovery of the datain case of failures. A database requires at least two redo log
files.

» Control files contain information necessary to maintain and verify database integrity. For example, a
contral fileis used to identify the data files and redo log files. A database needs at least one control file.

Introduction to Oracle9i: SQL E-5




Other Key Physical Structures

. Database Archived

log files

E-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Other Key Files
The Oracle Server also uses other filesthat are not part of the database:

» The parameter file defines the characteristics of an Oracle instance. For example, it contains parameters
that size some of the memory structuresin the SGA.

»  The password file authenticates which users are permitted to start up and shut down an Oracle instance.

» Archived redo log files are offline copies of the redo log files that may be necessary to recover from
mediafailures.

Introduction to Oracle9i: SQL E-6



Oracle Instance

An Oracle instance;
®* |s ameans to access an Oracle database
* Always opens one and only one database

Instance

SGA Shared pool

Memory

structures
Data buffer|| Redo log

cache buffer

Qo) Gevd GuopCrPDLemRGherd) PO

E-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle Instance

An Oracle instance consists of the SGA memory structure and the background processes used to manage a
database. An instance isidentified by using methods specific to each operating system. The instance can
open and use only one database at atime.

System Global Area

The SGA isamemory area used to store database information that is shared by database processes. It
contains data and control information for the Oracle Server. It is allocated in the virtual memory of the
computer where the Oracle server resides. The SGA consists of several memory structures:

* Theshared pool is used to store the most recently executed SQL statements and the most recently
used data from the data dictionary. These SQL statements may be submitted by a user processor, in
the case of stored procedures, read from the data dictionary.

» Thedatabase buffer cacheis used to store the most recently used data. The datais read from, and
written to, the data files.

» Theredo log buffer is used to track changes made to the database by the server and background
Processes.

Introduction to Oracle9i: SQL E-7




Oracle Instance
System Global Area (continued)

The purpose of these structuresis discussed in detail in later sections of this lesson.
There are also two optional memory structuresin the SGA:
e Javapool: Used to store Java code

e Largepool: Used to store large memory structures not directly related to SQL statement
processing; for example, data blocks copied during backup and restore operations

Background Processes

The background processes in an instance perform common functions that are needed to service requests
from concurrent users without compromising the integrity and performance of the system. They
consolidate functions that would otherwise be handled by multiple Oracle programs running for each
user. The background processes perform I/O and monitor other Oracle processes to provide increased
paralédism for better performance and reliability.
Depending on its configuration, an Oracle instance may include several background processes, but
every instance includes these five required background processes:

» Database Writer (DBWO) is responsible for writing changed data from the database buffer cache

to the data files.

» Log Writer (LGWR) writes changes registered in the redo log buffer to the redo log files.

*  System Monitor (SMON) checksfor consistency of the database and, if necessary, initiates
recovery of the database when the database is opened.

*  Process Monitor (PMON) cleans up resourcesif one of the Oracle processes fails.

»  The Checkpoint Process (CKPT) is responsible for updating database status information in the
contral files and data files whenever changesin the buffer cache are permanently recorded in the
database.

The following sections of thislesson explain how a server process uses some of the components of the
Oracle instance and database to process SQL statements submitted by a user process.

Introduction to Oracle9i: SQL E-8



E-9

Processing a SQL Statement

Connect to an instance using:
— The user process
— The server process

The Oracle Server components that are used
depend on the type of SQL statement:

— Queries return rows
— DML statements log changes
— Commit ensures transaction recovery

Some Oracle Server components do not
participate in SQL statement processing.

Copyright © Oracle Corporation, 2001. All rights reserved.

Components Used to Process SQL

Not al of the components of an Oracle instance are used to process SQL statements.The user and server
processes are used to connect a user to an Oracle instance. These processes are not part of the Oracle

instance, but are required to process a SQL statement.

Some of the background processes, SGA structures, and database files are used to process SQL statements.

Depending on the type of SQL statement, different components are used:

Queries require additional processing to return rows to the user

Data manipulation language (DML) statements require additional processing to log the changes
made to the data

Commit processing ensures that the modified datain atransaction can be recovered
Some required background processes do not directly participate in processing a SQL statement but are used

to improve performance and to recover the database.

The optional background process, ARCQO, is used to ensure that a production database can be recovered.

Introduction to Oracle9i: SQL E-9




Connecting to an Instance

= —
- g

Application server

& AN

Browser

CONRE=

v Oracle Server

OO O

A

—_
=

v Server

E-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Processes Used to Connect to an Instance

Before users can submit SQL statements to the Oracle Server, they must connect to an instance.
The user starts atool such asiSQL*Plus or runs an application devel oped using atool such as Oracle Forms.

This application or tool is executed in auser process.

In the most basic configuration, when a user logs on to the Oracle Server, a processis created on the
computer running the Oracle Server. This processis called a server process. The server process
communicates with the Oracle instance on behalf of the user process that runs on the client. The server

process executes SQL statements on behaf of the user.
Connection

A connection is a communication pathway between a user process and an Oracle Server. A database user

can connect to an Oracle Server in one of three ways:

e Theuser logs on to the operating system running the Oracle instance and starts an application or tool
that accesses the database on that system. The communication pathway is established using the
interprocess communication mechanisms available on the host operating system.

Introduction to Oracle9i:

SQL E-10




Processes Used to Connect to an Instance
Connection (continued)

» Theuser starts the application or tool on alocal computer and connects over a network to the
computer running the Oracle instance. In this configuration, called client-server, network software
is used to communicate between the user and the Oracle Server.

* Inathree-tiered connection, the user’s computer communicates over the network to an application
or anetwork server, which is connected through a network to the machine running the Oracle
instance. For example, the user runs a browser on a network computer to use an application residing
on an NT server that retrieves data from an Oracle database running on a UNIX host.

Sessions

A session is aspecific connection of a user to an Oracle Server. The session starts when the user is
validated by the Oracle Server, and it ends when the user logs out or when thereis an abnormal
termination. For a given database user, many concurrent sessions are possibleif the user logs on from
many tools, applications, or terminals at the same time. Except for some specialized database
administration tools, starting a database session requires that the Oracle Server be available for use.

Note: Thetype of connection explained here, where there is a one-to-one correspondence between a user
and server process, is called a dedicated server connection.

Introduction to Oracle9i: SQL E-11



Processing a Query

* Parse:
— Search for identical statement
— Check syntax, object names, and privileges
— Lock objects used during parse
— Create and store execution plan
* Execute: Identify rows selected

®* Fetch: Return rows to user process

E-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Query Processing Steps

Queries are different from other types of SQL statements because, if successful, they return data as results.
Wheresas other statements simply return success or failure, a query can return one row or thousands of rows.

There are three main stages in the processing of a query:
* Parse
* Execute
* Fetch

Parsing a SQL Statement

During the parse stage, the SQL statement is passed from the user process to the server process, and a parsed
representation of the SQL statement is loaded into a shared SQL area.

During the parse, the server process performs the following functions:
» Searchesfor an existing copy of the SQL statement in the shared pool
* Validatesthe SQL statement by checking its syntax
* Performs datadictionary lookups to validate table and column definitions

Introduction to Oracle9i: SQL E-12




The Shared Pool

Shared pool

Library
cache

Data dictionary

* The library cache contains the SQL statement text,
parsed code, and execution plan.

* The data dictionary cache contains table, column,
and other object definitions and privileges.

® The shared pool is sized by SHARED POOL_SI ZE.

E-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Shared Pool Components

During the parse stage, the server process uses the areain the SGA known as the shared pool to compile the
SQL statement. The shared pool has two primary components:

e Library cache
o Datadictionary cache
Library Cache

Thelibrary cache stores information about the most recently used SQL statements in a memory structure
called ashared SQL area. The shared SQL area contains:

» Thetext of the SQL statement
e Theparsetree: A compiled version of the statement
» Theexecution plan: The steps to be taken when executing the statement
The optimizer is the function in the Oracle Server that determines the optimal execution plan.

If a SQL statement is reexecuted and a shared SQL area already contains the execution plan for the statement,
the server process does not need to parse the statement. The library cache improves the performance of
applications that reuse SQL statements by reducing parse time and memory requirements. If the SQL
statement is not reused, it is eventually aged out of the library cache.

Introduction to Oracle9i: SQL E-13



Shared Pool Components (continued)
Data Dictionary Cache

The data dictionary cache, also known as the dictionary cache or row cache, is a collection of the most
recently used definitions in the database. It includes information about database files, tables, indexes,
columns, users, privileges, and other database objects.

During the parse phase, the server process |ooks for the information in the dictionary cache to resolve
the object names specified in the SQL statement and to validate the access privileges. If necessary, the
server process initiates the loading of thisinformation from the data files.

Sizing the Shared Pool
The size of the shared poal is specified by theinitialization parameter SHARED POOL_SI ZE.

Introduction to Oracle9i: SQL E-14



Database Buffer Cache

Data buffer
cache

OO OO O

® Stores the most recently used blocks
* Size of a buffer based on DB_BLOCK SI ZE
* Number of buffers defined by DB_BLOCK BUFFERS

E-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Function of the Database Buffer Cache

When a query is processed, the server process looks in the database buffer cache for any blocks it needs. If
the block is not found in the database buffer cache, the server process reads the block from the data file and
places a copy in the buffer cache. Because subsequent requests for the same block may find the block in
memory, the requests may not require physical reads. The Oracle Server uses aleast recently used algorithm
to age out buffersthat have not been accessed recently to make room for new blocks in the buffer cache.

Sizing the Database Buffer Cache

The size of each buffer in the buffer cacheis equal to the size of an Oracle block, and it is specified by the
DB BLOCK Sl ZE parameter. The number of buffersis equa to the value of the DB_BLOCK BUFFERS
parameter.

Instructor Note
For more information on data blocks, Please refer Oracledi Concepts, Data Blocks, Extents, and Segments.

Introduction to Oracle9i: SQL E-15




Program Global Area (PGA)

* Not shared
* Writable only by the server process

e Contains:
— Sort area
— Session information

— Cursor state Server

process
PGA

— Stack space

E-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Program Global Area Components

A program global area (PGA) isamemory region that contains data and control information for a server
process. It is anonshared memory created by Oracle when a server processis started. Accesstoitis
exclusive to that server process and is read and written only by the Oracle Server code acting on behalf of
it. The PGA memory allocated by each server process attached to an Oracleinstanceis referred to asthe
aggregated PGA memory allocated by the instance.

In adedicated server configuration, the PGA of the server includes these components:
o Sort area: Used for any sorts that may be required to process the SQL statement
» Sessioninformation: Includes user privileges and performance statistics for the session

» Cursor state: Indicates the stage in the processing of the SQL statements that are currently used by
the session

»  Stack space: Contains other session variables
The PGA is allocated when a processis created and deallocated when the process is terminated.

Introduction to Oracle9i: SQL E-16




Processing a DML Statement

SGA
User Shared pool
process
Data buffer| | Redo log
cache buffer
UPDATE -
enpl oyees ...

m\@@@é

process
Data Control Redo
files files log files
Database
E-17 Copyright © Oracle Corporation, 2001. All rights reserved.

DML Processing Steps
A data manipulation language (DML) statement requires only two phases of processing:
e Parseisthe same as the parse phase used for processing a query
»  Execute requires additional processing to make data changes
DML Execute Phase
To execute aDML statement:

« If thedataand rollback blocks are not aready in the buffer cache, the server process reads them from
the data filesinto the buffer cache.

* Theserver process places locks on the rows that are to be modified.
* Intheredo log buffer, the server process records the changes to be made to the rollback and data.

« Therallback block changes record the values of the data before it is modified. The rollback block is
used to store the before image of the data, so that the DML statements can be rolled back if necessary.

*  Thedatablocks changes record the new val ues of the data.

Introduction to Oracle9i: SQL E-17



DML Processing Steps
DML Execute Phase (continued)

The server process records the before image to the rollback block and updates the data block.
Both of these changes are done in the database buffer cache. Any changed blocksin the buffer
cache are marked as dirty buffers: that is, buffersthat are not the same as the corresponding
blocks on the disk.

The processing of aDELETE or | NSERT command uses similar steps. The before image for a
DELETE contains the column values in the deleted row, and the before image of an | NSERT
contains the row location information.

Because the changes made to the blocks are only recorded in memory structures and are not
written immediately to disk, a computer failure that causes the loss of the SGA can aso lose
these changes.

Introduction to Oracle9i: SQL E-18



Redo Log Buffer

Redo log
buffer

oo/ oo,

®* Has its size defined by LOG_BUFFER

®* Records changes made through the instance
* |s used sequentially

* |Is acircular buffer

E-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Redo Log Buffer Characteristics

The server process records most of the changes made to datafile blocksin the redo log buffer, which is a part
of the SGA. Theredo log buffer has the following characteristics:

* lItssizein bytesis defined by the LOG_BUFFER parameter.
« It recordsthe block that is changed, the location of the change, and the new value in aredo entry. A

redo entry makes no distinction between the type of block that is changed; it ssmply records which
bytes are changed in the block.

» Theredo log buffer is used sequentially, and changes made by one transaction may be interleaved with
changes made by other transactions.

e ltisacircular buffer that is reused after it isfilled, but only after all the old redo entries are recorded in
the redo log files.

Introduction to Oracle9i: SQL E-19



Rollback Segment

Old image

I‘

Table

Rollback segment

New
image

DML statement

E-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Rollback Segment

Before making a change, the server process saves the old data value into arollback segment. This before image

is used to:
» Undo the changesif the transaction is rolled back

» Provide read consistency by ensuring that other transactions do not see uncommitted changes made by

the DML statement
* Recover the database to a consistent state in case of failures

Rollback segments, like tables and indexes, exist in datafiles, and rollback blocks are brought into the database

buffer cache as required. Rollback segments are created by the DBA.
Changesto rollback segments are recorded in the redo |og buffer.

Introduction to Oracle9i: SQL E-20




COW T Processing

@ Instance
SGA Shared pool
\ Data buffer|| Redo log
Server » cache buffer
process @
COCOTHEEAHAMWTO

(2)

Data Control Redo
files files log files
User
process
Database
E-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Fast COWM T

The Oracle Server uses afast commit mechanism that guarantees that the committed changes can be
recovered in case of instance failure.

System Change Number

Whenever atransaction commits, the Oracle Server assigns a commit system change number (SCN) to the
transaction. The SCN is monotonically incremented and is unique within the database. It is used by the Oracle
Server as an interna time stamp to synchronize data and to provide read consistency when datais retrieved
from the data files. Using the SCN enables the Oracle Server to perform consistency checks without
depending on the date and time of the operating system.

Stepsin Processing COVM Ts

When a COW T isissued, the following steps are performed:

* Theserver process places acommit record, along with the SCN, in the redo log buffer.

* LGWR performs a contiguous write of all the redo log buffer entries up to and including
the commit record to the redo log files. After this point, the Oracle Server can guarantee that the
changes will not be lost even if thereis an instance failure.

Introduction to Oracle9i: SQL E-21



Fast COWM T
Stepsin Processing COMM Ts (continued)

e Theuser isinformed that the COVM T is complete.
e The server process records information to indicate that the transaction is complete and that
resource locks can be released.

Flushing of the dirty buffersto the datafileis performed independently by DBWO and can occur
either before or after the commit.
Advantages of the Fast COWM T
The fast commit mechanism ensures data recovery by writing changes to the redo log buffer instead
of the datafiles. It has the following advantages:

e Sequentia writesto the log files are faster than writing to different blocksin the datafile.

e Only the minimal information that is necessary to record changesis written to the log files,
whereas writing to the data files would require whole blocks of data to be written.

o If multiple transactions request to commit a the same time, the instance piggybacks redo log
records into asingle write.

« Unlesstheredo log buffer is particularly full, only one synchronous write is required per
transaction. If piggybacking occurs, there can be less than one synchronous write per
transaction.

» Becausetheredo log buffer may be flushed before the COMM T, the size of the transaction
does not affect the amount of time needed for an actual COVM T operation.

Note: Rolling back atransaction does not trigger LGAR to write to disk. The Oracle Server aways
rolls back uncommitted changes when recovering from failures. If there isafailure after arollback,
before the rollback entries are recorded on disk, the absence of a commit record is sufficient to
ensure that the changes made by the transaction are rolled back.

Introduction to Oracle9i: SQL E-22



Log Writer (LOGAR)

SGA Shared pool ]
LGWR writes when:
Data buffer|| Redo log e ThereisaCOMW T
cache buffer e Theredo buffer log
is one-third full

OOO@@@O e Thereis more than

1 MB of redo
Y .
Data Control Redo » Before DBWO writes
files files log files
Database
E-23 Copyright © Oracle Corporation, 2001. All rights reserved.

LOG Writer
LGAR performs sequentia writes from the redo log buffer to the redo log file under the following situations:
*  When atransaction commits
»  When the redo log buffer is one-third full
*  When thereis more than a megabyte of changes recorded in the redo log buffer
» Before DBW writes modified blocks in the database buffer cache to the datafiles
Because the redo is needed for recovery, LGAR confirms the COVM T only after the redo iswritten to disk.

Introduction to Oracle9i: SQL E-23



Other Instance Processes

® Other required processes:
— Database Writer (DBWD)
— Process Monitor (PMON)
— System Monitor (SMON)
— Checkpoint (CKPT)

®* The archive process (ARCO) is usually created
in a production database

E-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Other Required Processes

Four other required processes do not participate directly in processing SQL statements:
» Database Writer (DBWWD)
*  Process Monitor (PMON)
*  System Monitor (SMON)
*  Checkpoint (CKPT)

The checkpoint processis used to synchronize database files.

The Archiver Process

All other background processes are optional, depending on the configuration of the database; however, one of
them, ARCO, is crucial to recovering a database after the loss of adisk. The ARCO processis usually created in
a production database.

Introduction to Oracle9i: SQL E-24



Database Writer (DBW))

SGA Shared pool
DBW) writes when:
Data buffer|| Redo log * There are many dirty
cache buffer buffers
® There are few free

OEDOCOCOC)  buiers

* Timeout occurs

Data Control Redo * Checkpoint occurs
files files log files

Database

E-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Writer

The server process records changes to rollback and data blocksin the buffer cache. The Database Writer
(DBWD) writes the dirty buffers from the database buffer cache to the data files. It ensures that a sufficient
number of free buffers (buffers that can be overwritten when server processes need to read in blocks from the
datafiles) are available in the database buffer cache. Database performance is improved because server
processes make changes only in the buffer cache, and the DBWD defers writing to the data files until one of the

following events occurs:
*  Thenumber of dirty buffers reaches athreshold value

» A process scans a specified number of blocks when scanning for free buffers and cannot
find any

e A timeout occurs (every three seconds)

» A checkpoint occurs (a checkpoint is ameans of synchronizing the database buffer cache with the data
file)

Introduction to Oracle9i: SQL E-25



SMON: System Monitor

* Automatically recovers the instance:
— Rolls forward changes in the redo logs
— Opens the database for user access
— Rolls back uncommitted transactions
®* Coalesces free space

®* Deallocates temporary segments

E-26 Copyright © Oracle Corporation, 2001. All rights reserved.

SMON: System Monitor

If the Oracle instance fails, any information in the SGA that has not been written to disk islost. For example,
the failure of the operating system causes an instance failure. After the loss of the instance, the background
process SMON automatically performs instance recovery when the database is reopened. Instance recovery

consists of the following steps:

» Rolling forward to recover data that has not been recorded in the data files but that has been recorded in
the online redo log. This data has not been written to disk because of the loss of the SGA during
instance failure. During this process, SMON reads the redo log files and applies the changes recorded in
the redo log to the data blocks. Because al committed transaction have been written to the redo logs,

this process compl etely recovers these transactions.

*  Opening the database so users can log on. Any datathat is not locked by unrecovered transactionsis

immediately available.

* Roalling back uncommitted transactions. They are rolled back by SMON or by the individual server

processes as they access locked data.
SMON also performs some space maintenance functions:
* It combines, or coal esces, adjacent areas of free space in the datafiles.

e It dedllocates temporary segments to return them as free space in datafiles. Temporary segments are

used to store data during SQL statement processing.

Introduction to Oracle9i: SQL E-26



PMON: Process Monitor

Cleans up after failed processes by:
* Rolling back the transaction

®* Releasing locks

®* Releasing other resources

E-27 Copyright © Oracle Corporation, 2001. All rights reserved.

PMON Functionality
The background process PMON cleans up after failed processes by:
* Rolling back the user’ s current transaction
» Releasing dl currently held table or row locks
»  Freeing other resources currently reserved by the user

Introduction to Oracle9i: SQL E-27



Summary

In this appendix, you should have learned how to:

* |dentify database files: data files, control files,
online redo logs

* Describe SGA memory structures: DB buffer
cache, shared SQL pool, and redo log buffer

* Explain primary background processes:
DBWD, LGAR, CKPT, PMON, SMON, and ARCO

* List SQL processing steps: parse, execute, fetch

E-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary
The Oracle database includes these files:

» Contral files: Contain information required to verify the integrity of the database, including the names
of the other filesin the database (The control files are usually mirrored.)

« Datafiles: Contain the data in the database, including tables, indexes, rollback segments, and
temporary segments

* Onlineredo logs: Contain the changes made to the data files (Online redo logs are used for recovery
and are usually mirrored.)

Other files commonly used with the database include:
» Parameter file: Defines the characteristics of an Oracle instance
» Password file: Authenticates privileged database users
» Archived redo logs: Are backups of the online redo logs

Introduction to Oracle9i: SQL E-28



SGA Memory Structures
The System Global Area (SGA) has three primary structures:

e Shared pool: Storesthe most recently executed SQL statements and the most recently used
data from the data dictionary

« Database buffer cache: Stores the most recently used data

» Redo log buffer: Records changes made to the database using the instance
Background Processes
A production Oracle instance includes these processes:

« Database Writer (DBWD): Writes changed data to the data files

e Log Writer (LGAR): Records changesto the datafilesin the online redo log files

e System Monitor (SMON): Checks for consistency and initiates recovery of the database
when the database is opened

e Process Monitor (PMON): Cleans up the resourcesif one of the processesfails
e Checkpoint Process (CKPT): Updates the database status information after a checkpoint

* Archiver (ARCO): Backs up the online redo log to ensure recovery after amediafailure
(This processis optional, but is usualy included in a production instance.)

Depending on its configuration, the instance may also include other processes.
SQL Statement Processing Steps
The steps used to process a SQL statement include:

e Parse: Compilesthe SQL statement

» Execute: Identifies selected rows or applies DML changes to the data

« Fetch: Returnsthe rows queried by a SELECT statement

Introduction to Oracle9i: SQL E-29



Introduction to Oracle9i: SQL E-30



Index

Note: A bolded number or letter refers to an entire lesson or appendix.

APPEND Command C-11
ACCESS PARAMETER 20-19
Adding Data through a View 11-16
ADD_MONTHS Function 3-21
ALL Operator 6-16
Alias 1-4,1-17, 1-16, 2-7, 2-24, 11-9
Table Aliases 4-12
ALL | NSERT (Conditional) 20-7
ALL COL_COWENT Data Dictionary View 9-32
ALL_TAB_COWENT Data Dictionary View 9-32
ALTER SEQUENCE Statement 12-12
ALTER TABLE Statement 9-22, 9-23, 10-17, 10-20, 10-21, 13-11
ALTER USER Statement 13-11
Ambiguous Column Names 4-11
American National Standards Institute 1-24
ANSI [-24
ANY Operator 6-15
Application Server 1-5
Archived Redo Log File E-6
Arguments 3-3, 3-5
Arithmetic Expression 1-9
Arithmetic Operator 1-9
AS Subquery Clause 9-20
Assigning Privileges 13-7
Attributes 1-16, 1-19
AVG Function 5-6, 5-7

Introduction to Oracle9i: SQL Index-1



Index

Background Processes E-3, E-7
BETWEEN Operator 2-10
BREAK Command 7-18

BTl TLE Command 7-19

CHANGE Command C-12

Caching Sequence 12-1

Calculations in Expressions 1-9
Cardinality 1-18

Cartesian Product 4-4, 4-5

CASE Expression 3-51, 3-52, 18-12
CASCADE CONSTRAI NTS Clause 10-22
Character Data Type in Functions 3-4
Character Strings 2-5, 2-6

CHECK Constraint 10-16

Checkpoint Process E-8

Child Node 19-10

CLEAR BREAK Command 7-18
COALESCE Function 3-49

COLUWN Command 7-16, 7-17

Column Level Constraints 10-8
Command or Script Files 7-20
COMMENT Statement 9-32

COW T Statement 8-2, 8-33, 8-35, 8-39, 8-40, 9-8
Comparison Operator, Comparison Conditions 2-7, 18-4
Composite Column 17-17

Composite Unique Key 10-10

CONCAT Function 3-11

Concatenated Groupings 17-21

Concatenation Operator 1-18

Introduction to Oracle9i: SQL Index-2



Index

Conditional FI RST | NSERT 20-7, 20-13, 20-14

Conditional If-Then-Else Logic 3-51
Conditional | NSERT ALL 20-7, 20-11

Conditional Processing 3-51

Conditions, Logical 2-15

CONNECT BY Clause 19-5, 19-7, 19-13

CONSTRAI NTS 10
CASCADE CONSTRAI NTS Clause 10-22
CHECK Constraint 10-16
Column-Level Constraints 10-8
Defining Constraints 10-5
Deleting a Record with an Integrity Constraint 8-22
Disabling 10-20
Dropping a Constraint 10-19
FOREI GN KEY 10-13, 10-14, 10-15, I-19
NOT NULL Constraint 10-7
Primary Key 10-11
READ ONLY Constraint 11-19
REFERENCE Constraint 10-15
Referential Integrity Constraint 10-13

Table-Level Constraints 10-8
UNI QUE Constraint 10-9, 10-10

Controlling Database Access 13

Control File E-5

Correlated Subquery 18-2, 18-13, 18-14, 18-15, 18-21, 18-24
Correlated UPDATE 18-22

Correlation 18-17

COUNT Function 5-8

Introduction to Oracle9i: SQL Index-3



CREATE DATABASE Statement 16-9
CREATE DI RECTORY Statement 20-20
CREATE | NDEX Statement 12-17, 20-24
Creating Scripts 1-26

CREATE SEQUENCE Statement 12-5
CREATE TABLE Statement 9

CREATE USER Statement 13-6
CREATE VI EWStatement 11-7

Cross Tabular Reports 17-9

Cross Tabulation Rows 17-6

Cross Tabulation Values 17-10

CUBE Operator 17-2, 17-6, 17-9
CURRENT_DATE Function 16-6
CURRENT_TI MESTAMP Function 16-7
CURRVAL 9-7,12-8

CYCLE Clause (Sequences) 12-6

Date Functions 3-6
Data Control Language (DCL) Statements 8-33, 9
Data Definition Language (DDL) Statements 8-33, 9-5, 13
Data Manipulation Language (DML) Statements 8
DML Operations through a View 11-14
Data Dictionary Tables 9-9, D-3
Data Dictionary Cache E-13, E-14
Data File E-5
Data from More than One Table (Joins) 4

Data Structures in the Oracle Database 9-3, 9-5

Introduction to Oracle9i: SQL Index-4



Index

Data Types 3-25

Data Warehouse Applications 1-8
Database Links 13-19

Database Writer E-8

Date Conversion Functions 3-4, 3-35
Datetime Data Type 9-14

Datetime Functions 16-2

Daylight Savings Time 16-5

DBTI MEZONE Function 16-9
DECODE Expression 3-51, 3-54
DEFAULT Clause 8-26, 8-27, 9-7
Default Date Display 2-6, 3-17
DEFAULT DI RECTORY 20-19
Default Sort Order 2-23

DEFI NE Command 7-5, 7-11

Defining Constraints 10-5

DELETE Statement 8-19, 8-20, 13-16
DESCRI BE Command 1-29, 8-7, 10-24, 11-13, C-7
DI SABLE Clause 10-20

DI STI NCT Keyword 1-4, 1-23, 5-5, 5-10
Dropping a Constraint 10-19

DROP ANY | NDEX Statement 12-2
DROP ANY VI EWStatement 11-20

Introduction to Oracle9i: SQL Index-5



DROP COLUMN Clause 9-27

DRCP | NDEX Statement 12

DROP SEQUENCE Statement 12-14
DROP SYNONYM 12-24

DROP TABLE Statement 9-29

DROP UNUSED COLUMNS Clause 9-28
DROP VI EWStatement 11-20

DUAL Table 3-14, 3-18

Duplicate Records 15-11

E-business 19-6, I-3

EDI T Command C-14

Entity 1-16, I-17, 1-18

Entity Relationship Diagram 1-16, 1-17, 1-16
Equijoins 4-8, 4-27

ESCAPE Option 2-13

Exclusive Locks 8-46

Introduction to Oracle9i: SQL Index-6



Execute Button (in iSQL*Plus) 1-7, 1-32
Executing SQL 1-26
EXI STS Operator 18-18, 18-19
Explicit Data Type Conversion 3-25
Expressions
Calculations in Expressions 1-9
CASE Expression 3-51, 3-52, 18-12
DECCODE Expression 3-51, 3-54
If-Then-Else Logic 3-51
External Tables 20
Conditional FI RST | NSERT 20-7, 20-13, 20-14
Conditional | NSERT ALL 20-7, 20-11
ORGANI ZATI ON EXTERNAL Clause 20-18, 20-19
Pivoting | NSERT 20-7, 20-15
Unconditional | NSERT 20-7, 20-10
REJECT LI M T Clause 20-19
TYPE ACCESS DRI VER_TYPE 20-19
EXTRACT Function 16-10

FOREI GN KEY Constraint 10-13, 10-14, 10-15, 1-19
Format Mode (fm) 3-31

FRACTI ONAL_SECONDS_PRECI SI ON 9-15

FROM Clause 1

FROMClause Query 11-21, 18-2, 18-10

FROM TZ Function 16-11

Introduction to Oracle9i: SQL Index-7



Index

Functions 3, 5

AVG (Average) 5-6, 5-7

Character Data Type in Functions 3-4
COALESCE Function 3-49

CONCAT Function 3-11

COUNT Function 5-8
CURRENT_DATE Function 16-6
CURRENT_TI MESTAMP Function 16-7

Date Conversion Functions 3-4, 3-35
Datetime Functions 16-2

DBTI MEZONE Function 16-9
EXTRACT Function 16-10

TI MEZONE_ABBR 16-10
TI MEZONE_REG ON 16-10

FROM TZ Function 16-11
I NI TCAP Function 3-9

| NSTR Function 3-11
LAST_DAY Function 3-21

LENGTH Function 3-11
LOCALTI MESTAMP Function 16-8
LOAER Function 3-9

LPAD Function 3-11

MAX Function 5-6, 5-7

M N Function 5-6, 5-7
MONTHS_BETWEEN Function 3-6, 3-21

Multiple-row Function 3-4

Introduction to Oracle9i: SQL Index-8



Functions 3, 5
NEXT_DAY Function 3-21
NULLI F Function 3-48
Number Functions 3-13
NVL Function 3-45, 3-46, 5-5, 5-12
NVL2 Function 3-47

Returning a Value 3-3

ROUND Function 3-14, 3-21, 3-23
SESSI ONTI MEZONE Function 16-9
STDDEV Function 5-7

SUBSTR Function 3-11

SUM Function 5-6, 5-7

SYS Function 9-9

SYSDATE Function 3-18, 3-20, 9-7
TO _CHAR Function 3-31, 3-37, 3-39
TO _DATE Function 3-39
TO_NUMBER Function 3-39

TO_TI MESTAMP Function 16-12
TO_YM NTERVAL Function 16-13
TRI MFunction 3-11

TRUNC Function 3-15, 3-21, 3-23
TZOFFSET 16-14 Function

UPPER Function 3-9, 3-10

USER Function 9-7

Function-based Indexes 12-21

Introduction to Oracle9i: SQL Index-9



Generating Unique Numbers 12-3

GRANT Statement 13

Greenwich Mean Time 16-3

Gregorian Calendar 16-10

GROUP BY Clause 5-13, 5-14, 5-15, 5-16, 17-3, 17-4
GROUP BY RCOLLUP 17-17

Grouping Data 5, 17-2

Group Functions 5

Group Functions in a Subquery 6-10

Group Functions and NULL Values 5-11
GROUPI NG SETS Clause 17-12,17-11, 17-13

Guidelines for Creating a View 11-8

Hash Sign 3-38
HAVI NGClause 5-21, 5-22, 5-23, 6-11, 17-5
Hierarchical Queries 19
Child Node 19-10
CONNECT BY Clause 19-5, 19-7, 19-13
PRI OR Clause 19-7
Pruning the Tree 19-13
START W THClause 19-5, 19-6

If-Then-Else Logic 3-51
Implicit Data Type Conversion 3-25
Indexes 9-3, 12
CREATE | NDEX Statement 12-17, 20-24
Naming Indexes 20-2
Non-unique Indexes 12-16
Unique Index 10-10, 12-6
When to Create an Index 12-18

Introduction to Oracle9i: SQL Index-10



Index

I NI TCAP Function 3-9

Inline Views 11-2, 11-21

Inner Query 6-3, 6-4, 6-5, 18-5

| NSERT Statement 8-5, 8-6, 8-11, 13-18, 20-2, 20-7

Conditional FI RST | NSERT 20-7, 20-13, 20-14
Conditional | NSERT ALL 20-7, 20-11

Pivoting | NSERT 20-7, 20-15

Unconditional | NSERT 20-7, 20-10

VALUES Clause 8-5

INSTR Function 3-11

Integrity Constraints 8-17, 10-2

International Standards Organization (ISO) 1-24

Internet Features

I-7

| NTERSECT Operator 15-12

| NTERVAL YEAR TO MONTH Data Type 9-17
'S NOT NULL Operator 2-14

'S NULL Operator 2-14

iISLQL*Plus 1-24

Java

Joining Tables 1-3, 4

Cartesian Product 4-4, 4-5

Equijoins 4-8, 4-27

Joining a Table to Itself 4-19

Joining More than Two Tables 4-13

Joining When there is No Matching Record 4-34

Introduction to Oracle9i: SQL Index-11



Joining Tables 1-3, 4
Left Table 4-32
Natural Joins 4-24, 4-26
Nonequijoins 4-14, 4-15
ON Clause 4-28, 4-29
Outer Join 4-17, 4-18
Rl GHT Table 4-33
Three-Way Join  4-30

Keywords 1-4, 1-7

LAST_DAY Function 3-21
LENGTH Function 3-11
LEVEL Psuedocolumn 19-10
Library Cache E-13
LI KE Operator 2-12
LI ST Command C-11
Literal Values 1-20
Loading Scripts 1-32
LOCALTI MESTAMP Function 16-8
Locks 8-45

Exclusive Locks 8-46
Logical Conditions 2-15
Logical Subsets 11-4
LogWriter (LGWR) E-6, E-8
LOVER Function 3-9
LPAD Function 3-11

Introduction to Oracle9i: SQL Index-12



MAX Function 5-6, 5-7
MERGE Statement 8-28, 8-29

VWHEN NOT MATCHED Clause 8-31
M N Function 5-6, 5-7
M NUS Operator 15-14
MODI FY Clause 9-26
Modify Column 9-25
MONTHS BETWEEN Function 3-6, 3-21
Multiple Column Subquery 6-7, 18-2, 18-8
Multiple-row Function 3-4
Multiple-row Subquery 6-2, 6-7, 6-14, 18-6
Multitable Inserts 20-2, 20-5, 20-7

Naming Conventions for Tables 9-4
Naming Indexes 20-2
Natural Joins 4-24, 4-26
Nested Queries 6-4, 18-4
Nested Functions 3-42
NEXT DAY Function 3-21
NEXTVAL Psuedocolumn 9-7, 12-8
Nonequijoins 4-14, 4-15
Nonpairwise Comparisons 18-7
Non-unique Indexes 12-16
NOT EXI STS Operator 18-20
NOT | N Operator 18-20
NOT NULL Constraint 10-7
NULL 1-14, 1-15, 2-14, 1-19
NULLI F Function 3-48
Number Functions 3-13
NVL Function 3-45, 3-46, 5-5, 5-12
NVL2 Function 3-47

Introduction to Oracle9i: SQL Index-13



Object Privileges 13-2

Object Relational Database Management System (ORDBMS)

Object-oriented Programming 1-7
ON d ause 4-28, 4-29
ON DELETE CASCADE Clause 10-15
ON DELETE SET NULL Clause 10-15
On Line Transaction Processing 1-8
OR REPLACE Clause 11-12
Oracle Instance E-3, E-7, 1-23
Oracle9i Application Server 1-4
Oracle9i Database -4
ORDER BY Clause 2, 15-20
Default Sort Order 2-23
Order of Precedence 1-12
ORGANI ZATI ON EXTERNAL Clause 20-18, 20-19
Outer Join 4-17, 4-18
Outer Query 6-5, 18-5

Pairwize Comparisions 18-7
Paremeter File E-6
Parent-child Relationship 19-4
Password File E-6
Pivoting | NSERT 20-7, 20-15
Primary Key 10-11
PRI CORClause 19-7
Privileges 13

Object Privileges 13-2
Process Monitor E-8
Program Global Area E-16
Projection 1-3
PUBLI CKeyword 13-5

-2, 1-7,1-12

Introduction to Oracle9i: SQL Index-14



Read Consistency 8-43, 8-44

READ ONLY Constraint 11-19
REMCommand 7-21

REFERENCE Constraint 10-13, 10-15
Referential Integrity Constraint 10-13
REJECT LI M T Clause 20-19
Relational Database Management System (RDBMS) |-2, I-13, I-14
Relationships [-16

RENAME Command 9-28

Restricting Rows 2-2

Retrieving Data from a View 11-10
Returning a Value 3-3

REVOKE Command 13-17

ROLLBACK Statement 8-2, 8-33, 8-35, 8-38, 8-41, E-20
Rollback Segment E-20

RCOLLUP Clause 17-2,17-6,17-7,17-8
Root Node 19-10

ROUND Function 3-14, 3-21, 3-23

Row 1-19, 17-8

ROWNUMBER Psuedocolumn

RR Date Format 3-41

Rules of Precedence 1-13, 2-19

Introduction to Oracle9i: SQL Index-15



Index

SAVE Command C-14

SAVEPQO NT Statement 8-2, 8-35, 8-36

Scalar Subquery 18-11

Schema 9-6, 13-4

Script or Command Files 7-20, 7-22, C-2
Creating Scripts 1-26
Loading Scripts 1-32

Search 2-12

SELECT Statement 1

Selection 1-3

Sequences 9-13, 12
Caching Sequence Values 12-11
CREATE SEQUENCE Statement 12-5
CURRVAL 9-7,12-8
CYCLE Clause 12-6
Generating Unique Numbers 12-3
NEXTVAL 9-7,12-8

Server Architecture E-2

SESSI ONTI MEZONE Function 16-9

SET Command 7-12

SET Clause 8-15

SET Operators 15-2, 15-3

SET Tl ME_ZONE Clause 16-9

SET UNUSED Clause 9-28

SET VERI FY ONCommand 7-7

Sets of Rows 5-3

Shared Global Area 1-23, E-7

Shared SQL Area E-14

Single Ampersand Substitution 7-4

Introduction to Oracle9i: SQL Index-16



Single Row Function 3-4

Single Row Operators 6-8

Single Row Subqueries 6-2, 6-7

SMON Process E-8

SOVE Operator 6-15

Sorting Results with the ORDER BY Clause 2
Default Sort Order 2-23

Spool File D-5

Structured Query Language (SQL) 1-2, 1-21, 1-22, 1-2, 1-24, 1-25

SQL Buffer C-3

SQL Scripts D-2

SQL*Plus C

SQL*Plus Commands C-2

SQL*Plus Script File 7-3

SQL: 1999 Compliance 4-6, 4-22, 4-30

START Command C-14

START W THClause 19-5, 19-6

Statement 1-4

Statement Level Rollback 8-42

STDDEV Function 5-7

Introduction to Oracle9i: SQL Index-17



Subqueries 6, 8-16, 8-21, 8-23, 9-18, 11-21, 18-2, 18-3, 18-10
AS Subquery Clause 9-20
Correlated Subquery 18-2, 18-13, 18-14, 18-15, 18-21, 18-24
Correlated UPDATE 18-22
FROMClause Query 11-21, 18-2, 18-10
Group Functions in a Subquery 6-10
Inner Query 6-3, 6-4, 6-5, 18-5
Multiple Column Subquery 6-7, 18-2, 18-8
Multiple-row Subquery 6-2, 6-7, 6-14, 18-6
Nested Queries 6-4, 18-4
No Rows Returned from the Subquery 6-13
Outer Query 6-5, 18-5
Placement of the Subquery 6-4
Scalar Subquery 18-11
Single Row Subqueries 6-2, 6-7

Subsets, Logical 11-4

Substitution Variables 7-2, 7-3

SUBSTR Function 3-11

SUM Function 5-6, 5-7

Summary Results for Groups of Rows 5-18

Superaggregate Rows 17-7,17-8, 17-9

SYS Function 9-9

Synonym 9-3, 12-2, 12-3, 12-23, 13-3

SYSDATE Function 3-18, 3-20, 9-7

System Development Life Cycle 1-10

System Global Area 1-23, E-3, E-8

Introduction to Oracle9i: SQL Index-18



Table Aliases 4-12

Table Level Constraints 10-8

Table Prefixes 4-11

Three-Way Join  4-30

Time Zone 16-3

TI MESTAWP Data Type 9-16
TI MESTAMP WTH TI ME ZONE 9-15
TI MESTAMP W TH LOCAL Tl ME 9-16
| NTERVAL YEAR TO MONTH 9-17

TI MEZONE_ABBR 16-10

TI MEZONE_REGQ ON 16-10

TO_CHAR Function 3-31, 3-37, 3-39

TO_DATE Function 3-39

TO_NUMBER Function 3-39

TO Tl MESTAMP Function 16-12

TO_YM NTERVAL Function 16-13

Top-n Analysis 11-2, 11-22, 11-23, 11-24

Transactions 8-32

Tree Structured Report 19

TRI MFunction 3-11

TRUNC Function 3-15, 3-21, 3-23

TRUNCATE TABLE Statement 9-31

TTI TLE Command 7-19

Tuple 1-19

TYPE ACCESS_DRI VER TYPE 20-19

TZOFFSET Function 16-14

Introduction to Oracle9i: SQL Index-19



UNDEFI NE Command 7-11
UNI ON Operator 15-7, 15-8, 15-11
UNI ON Operator 15-10, 15-11
UNI QUE Constraint 10-9, 10-10
Unique Identifier 1-18
Unique Index 10-10, 12-6
UPDATE Statement 8, 13-14

SET Clause 8-15

Correlated UPDATE 18-22
UPPER Function 3-9, 3-10
Users - (Creating) 13-6
USER Function 9-7
User Process E-10
USER_CATALQOG Dictionary View 9-10
USER _COL_COMVENTS Dictionary View 9-32
USER_COL_PRI VS_MADE Dictionary View D-4
USER_CONS_COLUMNS Dictionary View 10-19, 10-25
USER_CONSTRAI NTS Dictionary View 10-4, 10-19, 10-24
USER DB LI NKS Dictionary View 13-19
USER | NDEXES Dictionary View 12-20
USER_OBJECTS Dictionary View 9-10, D-4
USER_SEQUENCES Dictionary View 12-7
USER_TAB_COMVENTS Dictionary View 9-30
USER TAB PRI VS MADE Dictionary View D-4
USER_TABLES Dictionary View 9-10, D-4
USER_UNUSED COL_TABS Dictionary View 9-28
USI NG Clause 4-26, 13-20
UTC (Coordinated Universal Time) 9-15

Introduction to Oracle9i: SQL Index-20



VALUES Clause 8-5
Variance 5-7
VERI FY Command 7-7
Views 9-3, 11
Guidelines for Creating a View 11-8
Inline Views 11-2, 11-21
OR REPLACE Clause 11-12
Retrieving Data from a View 11-10
Simple and Complex 11-6
USING Clause 4-26
W TH READ ONLY Clause 11-18
V$TI MEZONE_NAME Dictionary View 16-11

VWHEN NOT MATCHED Clause 8-31
VHERE Clause 2
Restricting Rows 2-2
Wildcard Symbol 2-12
W TH Clause 18-2, 18-26
W TH CHECK OPTI ONClause 8-25, 11-17, 13-13, 13-14, 13-15, 13-18
W TH READ ONLY Clause 11-18

XML 1-23

Year 2000 Compliance 3-17

Introduction to Oracle9i: SQL Index-21



Introduction to Oracle9i: SQL Index-22



